16 research outputs found

    Structure and some magnetic properties of (BiFeO3)x-(BaTiO3)1-x solid solutions prepared by solid-state sintering

    Get PDF
    This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3)x-(BaTiO3)1-x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7) were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and vibrating sample magnetometry (VSM) were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing

    Magnetoelectric effect in (BiFeO3)x-(BaTiO3)1-x solid solutions

    Get PDF
    The aim of the present work was to study magnetoelectric effect (ME) in (BiFeO3)x-(BaTiO3)1-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9) were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K) after initial electrical poling despite that the soaking time was reduced 10 times in this case

    Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    Get PDF
    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient αME was obtained for the Bi5Ti3FeO15 compound (αME ~ 10 mVcm−1 Oe−1). In the case of (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions, the maximum αME is of the order of 1 and 2.7 mVcm−1 Oe−1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times

    Hyperfine interactions and irreversible magnetic behavior in multiferroic aurivillius compounds

    Get PDF
    In this work investigations of structure and magnetic properties of conventionally sintered Bim+1Ti3Fem–3O3m+3 compounds with 4 ≤ m ≤ 8 were performed using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Room-temperature Mössbauer spectra of the compounds correspond to a paramagnetic state, however, low temperature measurements (80 K) reveal the antiferromagnetic state with a residual paramagnetic phase. Temperature dependencies of magnetic susceptibility, χσ(T), provided magnetic ordering temperatures and revealed an irreversibility in Aurivillius compounds with m ≥ 5. In the case of Bi5Ti3FeO15 compound the χσ(T) dependence shows a paramagnetic behavior down to 2 K. The Bi6Ti3Fe2O18 compound reveals a magnetic ordering at 11 K. The compounds with m = 6–8 show a magnetic ordering at temperatures higher than 200 K. Highly irreversible character of their temperature dependencies of χσ indicates a spin-glass type disordered magnetism with frustration due to a random distribution of Fe on Ti at their sites

    X-ray diffraction, Mossbauer spectroscopy, and magnetoelectric effect studies of (BiFeO3)x-(BaTiO3)1-x solid solutions

    Get PDF
    In this work the hyperfine interactions in (BiFeO3)x-(BaTiO3)1–x solid solutions with relation to their structural properties have been investigated. X-ray diffraction, Mössbauer spectroscopy and magnetoelectric effect measurements have been used for studies of sintered (BiFeO3)x-(BaTiO3)1–x solid solutions with x = 0.9, 0.8 and 0.7. With increasing contents of BaTiO3, the structural transformation from rhombohedral to cubic was observed. The weakening of the hyperfine magnetic fields accompanied by this transformation. On the other hand, the increasing amount of BaTiO3 caused an increase of the magnetoelectric effect

    A comparative study of hyperfine interactions in Aurivillius compounds prepared by mechanical activation and solid-state sintering

    No full text
    X-ray diffraction and Mössbauer spectroscopy techniques were used to study the structure and hyperfine interactions of multiferroic Aurivillius compounds Bim+1Ti3Fem-3O3m+3. Samples were synthesized by two methods, that is, the solid-state sintering at various temperatures and mechanical activation in a high-energy ball mill. The compounds were obtained from a mixture of three polycrystalline powder oxides, that is, TiO2, Fe2O3 and Bi2O3. At room temperature, the Aurivillius compounds are paramagnetic materials with orthorhombic crystal structure. The c lattice parameter of the unit cell depends linearly on the m − number of layers with perovskite-like structure. Based on the Mössbauer studies, it is concluded that the hyperfine interactions parameters do not change with m number

    Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration

    No full text
    The simple co-precipitation method was used to prepare AgxFeO2 delafossite with non-stoichiometric silver concentration in the range of x = 0.05-1. The obtained material was investigated using X-ray powder diffraction and 57Fe Mössbauer spectroscopy at room temperature. The structural and hyperfi ne interaction parameters were recognized in relation with decreasing silver concentration. The study revealed that the delafossite structure of AgxFeO2 was maintained up to x = 0.9; as the range of silver concentration was decreased to 0.05 ≤ x ≤ 0.8, a mixture of AgFeO2, Fe2O3 or/and FeOOH was formed

    Structure and Magnetic Properties of Mechanosynthesized Nanocrystalline Fe<sub>2</sub>CrSi Heusler Alloy

    No full text
    Heusler alloys constitute an interesting group of materials with wide applications. The purpose of the present study was to use the mechanical alloying method to synthesize Fe2CrSi Heusler alloy and learn about its structure and magnetic properties. Pure metal elements were ground for various periods of time in a planetary ball mill, and the process of alloy formation was monitored using X-ray diffraction and Mössbauer spectroscopy. It was found that after 20 h of milling, the disordered BCC solid solution was formed, with an average crystallite size ~11 nm. After thermal treatment, the desired Fe2CrSi Heusler alloy was obtained, with a small amount of secondary phases. Detailed XRD analysis showed the coexistence of two varieties of Heusler phase, namely Fm-3m and Pm-3n. The main result of this work is the detection of the hyperfine magnetic field distribution using Mössbauer spectroscopy. The occurrence of this distribution proves atomic disorder in the crystalline structure of the obtained Heusler alloy. Macroscopic magnetic measurements revealed soft magnetic properties of the alloy, with a magnetic moment of ~2.3 μB/f.u., only slightly larger than the theoretically predicted value

    Structure and some magnetic properties of (BiFeO3)x-(BaTiO3)1−x solid solutions prepared by solid-state sintering

    Get PDF
    This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3)x-(BaTiO3)1−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7) were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and vibrating sample magnetometry (VSM) were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing

    Effect of BaTiO3 concentration on structural and magnetic properties of mechanically activated BiFeO3-BaTiO3 system

    No full text
    In this research, the mechanical activation method is proposed as an alternative process of preparation of the (BiFeO3)1-x-(BaTiO3)x solid solutions with various concentrations of barium titanate (x = 0.1÷0.9). However, mechanical milling itself does not allow obtaining the desired products and additional thermal treatment is needed to complete the solid-state reaction. In the present studies, X-ray diffraction and 57Fe Mössbauer spectroscopy were applied as complementary methods in order to study the structural and magnetic properties of materials. The investigations revealed that an increase of BaTiO3 concentration causes changes in the crystalline and hyperfine magnetic structure of the studied (BiFeO3)1-x-(BaTiO3)x system
    corecore