19 research outputs found

    Demographic characteristics of children with early clinical manifestation of inflammatory bowel disease

    Get PDF
    Abstract Introduction: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic condition of the colon and small intestine. The disease is common in young people (children and young adults), but it is rare in children younger than five years of age. Therefore, IBD developing during the first years of life (under the age of 5) is known as an early-onset IBD (EO-IBD), and it is considered to be a specific entity with a distinct phenotype. However, the available data on that issue are still insufficient. Aim: To determine the characteristics and clinical course of children with early-onset IBD. Material and methods: We performed a retrospective database analysis of 47 infants younger than 5 years old diagnosed with IBD. Patient's demographic data, including age, sex, and age at disease onset, were collected in 6 paediatric hospitals in Poland. Disease location was established on the basis of the review of all endoscopic, colonoscopic, histopathological, and radiological records. All possible complications were reported, as well as any treatment and its efficacy. Since the diagnosis was established all patients have been on follow up. Results: Among 47 children registered in the database, 23 (49%) had a diagnosis of CD, 16 (34%) had UC, and 8 (17%) had IC (indeterminate colitis). The mean age at diagnosis was 28.5 ±27.5 months; 57.4% were male. The most common location/type of disease was ileocolonic disease (L3). The most common complication of IBD was anaemia, found in 30 (63.8%) children. The observed course of the disease was either severe or moderate. In 4 children younger than 2 years old, surgery was performed. Conclusions: Inflammatory bowel disease in children younger than 5 years old includes UC, CD, and a relatively high proportion of IC. In early-onset IBD severe and moderate course of the disease is usually observed. Disease manifestation in these patients is predominantly ileocolonic

    Polish statement on food allergy in children and adolescents

    Get PDF
    An adverse food reaction is defined as clinical symptoms occurring in children, adolescents or adults after ingestion of a food or chemical food additives. This reaction does not occur in healthy subjects. In certain individuals is a manifestation of the body hypersensitivity, i.e. qualitatively altered response to the consumed food. The disease symptoms observed after ingestion of the food can be triggered by two pathogenetic mechanisms; this allows adverse food reactions to be divided into allergic and non-allergic food hypersensitivity (food intolerance). Food allergy is defined as an abnormal immune response to ingested food (humoral, cellular or mixed). Non-immunological mechanisms (metabolic, pharmacological, microbiological or other) are responsible for clinical symptoms after food ingestion which occur in non-allergic hypersensitivity (food intolerance). Food allergy is considered a serious health problem in modern society. The prevalence of this disorder is varied and depends, among other factors, on the study population, its age, dietary habits, ethnic differences, and the degree of economic development of a given country. It is estimated that food allergy occurs most often among the youngest children (about 6-8% in infancy); the prevalence is lower among adolescents (approximately 3-4%) and adults (about 1-3%). The most common, age-dependent cause of hypersensitivity, expressed as sensitization or allergic disease (food allergy), are food allergens (trophoallergens). These are glycoproteins of animal or plant origine contained in: cow's milk, chicken egg, soybean, cereals, meat and fish, nuts, fruits, vegetables, molluscs, shellfish and other food products. Some of these allergens can cause cross-reactions, occurring as a result of concurrent hypersensitivity to food, inhaled or contact allergens. The development of an allergic process is a consequence of adverse health effects on the human body of different factors: genetic, environmental and supportive. In people predisposed (genetically) to atopy or allergy, the development of food allergy is determined by four allergic-immunological mechanisms, which were classified and described by Gell-Coombs. It is estimated that in approximately 48-50% of patients, allergic symptoms are caused only by type I reaction, the IgEmediated (immediate) mechanism. In the remaining patients, symptoms of food hypersensitivity are the result of other pathogenetic mechanisms, non-IgE mediated (delayed, late) or mixed (IgE mediated, non-IgE mediated). Clinical symptomatology of food allergy varies individually and depends on the type of food induced pathogenetic mechanism responsible for their occurrence. They relate to the organ or system in which the allergic reaction has occurred (the effector organ). Most commonly the symptoms involve many systems (gastrointestinal tract, skin, respiratory system, other organs), and approximately 10% of patients have isolated symptoms. The time of symptoms onset after eating the causative food is varied and determined by the pathogenetic mechanism of the allergic immune reaction (immediate, delayed or late symptoms). In the youngest patients, the main cause of food reactions is allergy to cow’s milk. In developmental age, the clinical picture of food allergy can change, as reflected in the so-called allergic march, which is the result of anatomical and functional maturation of the effector organs, affected by various harmful allergens (ingested, inhaled, contact allergens and allergic cross-reactions). The diagnosis of food allergy is a complex, long-term and time-consuming process, involving analysis of the allergic history (personal and in the family), a thorough evaluation of clinical signs, as well as correctly planned allergic and immune tests. The underlying cause of diagnostic difficulties in food allergy is the lack of a single universal laboratory test to identify both IgE-mediated and non-IgE mediated as well as mixed pathogenetic mechanisms of allergic reactions triggered by harmful food allergens. In food allergy diagnostics is only possible to identify an IgE-mediated allergic process (skin prick tests with food allergens, levels of specific IgE antibodies to food allergens). This allows one to confirm the diagnosis in patients whose symptoms are triggered in this pathogenetic mechanism (about 50% of patients). The method allowing one to conclude on the presence or absence of food hypersensitivity and its cause is a food challenge test (open, blinded, placebo-controlled). The occurrence of clinical symptoms after the administration of food allergen confirms the cause of food allergy (positive test) whereas the time elapsing between the triggering dose ingestion and the occurrence of clinical symptoms indicate the pathogenetic mechanisms of food allergy (immediate, delayed, late). The mainstay of causal treatment is temporary removal of harmful food from the patient’s diet, with the introduction of substitute ingredients with the nutritional value equivalent to the eliminated food. The duration of dietary treatment should be determined individually, and the measures of the effectiveness of the therapeutic elimination diet should include the absence or relief of allergic symptoms as well as normal physical and psychomotor development of the treated child. A variant alternative for dietary treatment of food allergy is specific induction of food tolerance by intended contact of the patient with the native or thermally processed harmful allergen (oral immunotherapy). This method has been used in the treatment of IgE-mediated allergy (to cow's milk protein, egg protein, peanut allergens). The obtained effect of tolerance is usually temporary. In order to avoid unnecessary prolongation of treatment in a child treated with an elimination diet, it is recommended to perform a food challenge test at least once a year. This test allows one to assess the body's current ability to acquire immune or clinical tolerance. A negative result of the test makes it possible to return to a normal diet, whereas a positive test is an indication for continued dietary treatment (persistent food allergy). Approximately 80% of children diagnosed with food allergy in infancy "grow out" of the disease before the age of 4-5 years. In children with non-IgE mediated food allergy the acquisition of food tolerance is faster and occurs in a higher percentage of treated patients compared to children with IgE-mediated food allergy. Pharmacological treatment is a necessary adjunct to dietary treatment in food allergy. It is used to control the rapidly increasing allergic symptoms (temporarily) or to achieve remission and to prevent relapses (long-term treatment). Preventive measures (primary prevention of allergies) are recommended for children born in a "high risk" group for the disease. These are comprehensive measures aimed at preventing sensitization of the body (an appropriate way of feeding the child, avoiding exposure to some allergens and adverse environmental factors). First of all, the infants should be breast-fed during the first 4-6 months of life, and solid foods (non milk products, including those containing gluten) should be introduced no earlier than 4 months of age, but no later than 6 months of age. An elimination diet is not recommended for pregnant women (prevention of intrauterine sensitization of the fetus and unborn child). The merits of introducing an elimination diet in mothers of exclusively breast-fed infants, when the child responds with allergic symptoms to the specific diet of the mother, are disputable. Secondary prevention focuses on preventing the recurrence of already diagnosed allergic disease; tertiary prevention is the fight against organ disability resulting from the chronicity and recurrences of an allergic disease process. Food allergy can adversely affect the physical development and the psycho-emotional condition of a sick child, and significantly interfere with his social contacts with peers. A long-term disease process, recurrence of clinical symptoms, and difficult course of elimination diet therapy are factors that impair the quality of life of a sick child and his family. The economic costs generated by food allergies affect both the patient's family budget (in the household), and the overall financial resources allocated to health care (at the state level). The adverse socio-economic effects of food allergy can be reduced by educational activities in the patient’s environment and dissemination of knowledge about the disease in the society

    Crosstalk between Resveratrol and Gut Barrier: A Review

    No full text
    The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area

    Overview of the Importance of Biotics in Gut Barrier Integrity

    No full text
    Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier

    A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet

    No full text
    Iron deficiency anemia (IDA) occurs in 15⁻46% of patients with celiac disease (CD), and in some cases, it may be its only manifestation. Studies in animal models have shown that prebiotics, including inulin, may help to increase intestinal absorption of iron. The aim of this study was to evaluate the effect of a prebiotic, oligofructose-enriched inulin (Synergy 1), on iron homeostasis in non-anemic children and adolescents with celiac disease (CD) in association with a gluten-free diet (GFD). Thirty-four CD patients (4⁻18 years old) were randomized into two groups receiving Synergy 1 (10 g/day) or a placebo (maltodextrin) for three months. Before and after intervention, blood samples were collected from all patients for assessment of blood morphology, biochemical parameters and serum hepcidin concentration. We found that serum hepcidin concentration after the intervention was significantly decreased by 60.9% (p = 0.046) in the Synergy 1 group, whereas no significant difference was observed in the placebo group. No differences in morphological and biochemical blood parameters (including ferritin, hemoglobin and C-reactive protein (CRP)) were observed after intervention in either group. Given that hepcidin decrease may improve intestinal iron absorption, these results warrant further investigation in a larger cohort and especially in patients with IDA

    TMPRSS6 rs855791 Polymorphism Status in Children with Celiac Disease and Anemia

    No full text
    Celiac disease (CD) is an autoimmune chronic inflammatory disease occurring in genetically predisposed individuals in response to the intake of gluten. Clinical presentation can be heterogeneous. Iron-deficient anemia (IDA) is one of the most common extra-intestinal manifestations of CD. Although IDA usually reverts with a gluten-free diet (GFD), some patients show persistent IDA, the mechanisms of which are poorly understood. Recent studies suggest an association between the rs855791 polymorphism in the TMPRSS6 gene and persistent IDA in adults with CD. The current study aimed to assess the potential link between rs855791 and persistent IDA in pediatric patients with CD. The study included 106 children diagnosed with CD between 2015 and 2019. Clinical and blood parameters (including blood count, serum iron) were collected at diagnosis and after ≥12 months of GFD, and the rs855791 genotype was assessed for each patient. IDA was present at diagnosis in 25 patients (23.6%); only three (3%) had persistent IDA after GFD. The prevalence of rs855791 genotypes was 9% (n = 10) for TT, 53% (n = 56) for CT, and 38% (n = 40) for CC. There was a tendency toward a higher proportion of the T allele in patients with IDA and lower hemoglobin in the TT genotype but without statistical significance. An association between rs855791 and persistent IDA was not observed. These findings suggest that persistent IDA is uncommon in pediatric patients with CD. The prevalence of rs855791 in children with CD is reported for the first time

    Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin D and E Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study

    No full text
    Prebiotics have been shown to improve absorption of some nutrients, including vitamins. This pilot study evaluated the effect of the prebiotic oligofructose-enriched inulin (Synergy 1) on fat-soluble vitamins status, parathormone, and calcium-related elements in pediatric celiac disease (CD) patients (n = 34) on a strict gluten-free diet (GFD). Participants were randomized into a group receiving 10 g of Synergy 1 or placebo (maltodextrin) together with a GFD. At baseline and after 3 months of intervention, 25-hydroxyvitamin D [25(OH)D], parathormone, vitamin E and A, calcium, phosphate, magnesium, total protein, and albumin were determined. Concentration of 25(OH)D increased significantly (p < 0.05) by 42% in CD patients receiving Synergy 1 in GFD, whereas no change was observed in placebo. Vitamin D status reached an optimal level in 46% of patients receiving Synergy 1. No significant difference in parathormone, calcium, and phosphate levels was observed. Concentration of vitamin E increased significantly (p < 0.05) by 19% in patients receiving Synergy 1, but not in the placebo. Vitamin A levels were not changed. Supplementation of GFD with Synergy 1 improved vitamin D and vitamin E status in children and adolescents with CD and could be considered a novel complementary method of management of fat-soluble vitamins deficiency in pediatric CD patients

    The Profile of Urinary Headspace Volatile Organic Compounds After 12-Week Intake of Oligofructose-Enriched Inulin by Children and Adolescents with Celiac Disease on a Gluten-Free Diet: Results of a Pilot, Randomized, Placebo-Controlled Clinical Trial

    No full text
    The concentration of volatile organic compounds (VOCs) can inform about the metabolic condition of the body. In the small intestine of untreated persons with celiac disease (CD), chronic inflammation can occur, leading to nutritional deficiencies, and consequently to functional impairments of the whole body. Metabolomic studies showed differences in the profile of VOCs in biological fluids of patients with CD in comparison to healthy persons; however, there is scarce quantitative and nutritional intervention information. The aim of this study was to evaluate the effect of the supplementation of a gluten-free diet (GFD) with prebiotic oligofructose-enriched inulin (Synergy 1) on the concentration of VOCs in the urine of children and adolescents with CD. Twenty-three participants were randomized to the group receiving Synergy 1 (10 g per day) or placebo for 12 weeks. Urinary VOCs were analyzed using solid-phase microextraction and gas chromatography–mass spectrometry. Sixteen compounds were identified and quantified in urine samples. The supplementation of GFD with Synergy 1 resulted in an average concentration drop (36%) of benzaldehyde in urine samples. In summary, Synergy 1, applied as a supplement of GFD for 12 weeks had a moderate impact on the VOC concentrations in the urine of children with CD

    The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial

    No full text
    Celiac disease (CD) is associated with intestinal microbiota alterations. The administration of prebiotics could be a promising method of restoring gut homeostasis in CD. The aim of this study was to evaluate the effect of prolonged oligofructose-enriched inulin (Synergy 1) administration on the characteristics and metabolism of intestinal microbiota in CD children following a gluten-free diet (GFD). Thirty-four paediatric CD patients (mean age 10 years; 62% females) on a GFD were randomized into two experimental groups receiving Synergy 1 (10 g/day) or placebo (maltodextrin; 7 g/day) for 3 months. The quantitative gut microbiota characteristics and short-chain fatty acids (SCFAs) concentration were analysed. In addition, side effects were monitored. Generally, the administration of Synergy 1 in a GFD did not cause any side effects. After the intervention period, Bifidobacterium count increased significantly (p < 0.05) in the Synergy 1 group. Moreover, an increase in faecal acetate and butyrate levels was observed in the prebiotic group. Consequently, total SCFA levels were 31% higher than at the baseline. The presented trial shows that Synergy 1 applied as a supplement of a GFD had a moderate effect on the qualitative characteristics of faecal microbiota, whereas it stimulated the bacterial metabolite production in CD children
    corecore