209 research outputs found

    Attributional and Consequential Life Cycle Assessment

    Get PDF
    An attributional life cycle assessment (ALCA) estimates what share of the global environmental burdens belongs to a product. A consequential LCA (CLCA) gives an estimate of how the global environmental burdens are affected by the production and use of the product. The distinction arose to resolve debates on what input data to use in an LCA and how to deal with allocation problems. An ALCA is based on average data, and allocation is performed by partitioning environmental burdens of a process between the life cycles served by this process. A CLCA ideally uses marginal data in many parts of the life cycle and avoids allocation through system expansion. This chapter aims to discuss and clarify the key concepts. It also discusses pros and cons of different methodological options, based on criteria derived from the starting point that environmental systems analysis should contribute to reducing the negative environmental impacts of humankind or at least reduce the impacts per functional unit: the method should be feasible and generate results that are accurate, comprehensible, inspiring, and robust. The CLCA is more accurate, but ALCA has other advantages. The decision to make an ALCA or a CLCA should ideally be taken by the LCA practitioner after discussions with the client and possibly with other stakeholders and colleagues

    Metal markets and recycling policies: impacts and challenges

    Get PDF
    An increased understanding of the existing markets for recycled (secondary) metals, including interactions with virgin materialproduction, is essential for public decision-making processes concerning the implementation and evaluation of different categoriesof recycling policies. In this paper, we review the existing literature with the purpose of discussing (1) the impacts of variousrecycling policies on metal markets in which aggregate demand can be met by both primary and secondary production, and (2) anumber of challenges that policy-makers need to confront in choosing between various types of recycling policies and policydesigns. A simple partial equilibrium model is used as a pedagogical tool for shedding light on the impacts of tradable recyclingcredits, virgin material taxes, and recycling subsidies. In a second step, the paper identifies and discusses a few key challengesthat policy-makers will need to address in recycling policy-making. These challenges include improving the functioning ofsecondary material markets by addressing various non-environmental market inefficiencies; identifying and designing (secondbest)policy mixes due to the presence of incomplete monitoring and enforcement of waste disposal behavior, and regulatingenvironmental impacts through price- or quantity-based policies. Throughout the analysis, we consult the empirical literature onthe functioning of scrap metal markets (e.g., steel, copper, and aluminum)

    Choice of system boundaries in life cycle assessment

    Get PDF
    System boundaries in life cycle assessments (LCA) must be specified in several dimensions: boundaries between the technological system and nature, delimitations of the geographical area and time horizon considered, boundaries between production and production of capital goods and boundaries between the life cycle of the product studied and related life cycles of other products. Principles for choice of system boundaries are discussed, especially concerning the last dimension. Three methods for defining the contents of the analysed system in this respect are described: process tree, technological whole system and socio-economic whole system. The methods are described in the application's multi-output processes and cascade recycling, and examples are discussed. It is concluded that system boundaries must be relevant in relation to the purpose of an LCA, that processes outside the process tree in many cases have more influence on the result than details within the process tree, and that the different methods need to be further compared in practice and evaluated with respect to both relevance, feasibility and uncertainty

    Normative ethics and methodology for life cycle assessment

    Get PDF
    Prospective life cycle assessment (LCA) provides information on the environmental consequences of individual actions. Retrospective LCA provides information about the environmental properties of the life cycle investigated and of its subsystems. In this paper we analyse the links between the choice of methodology and different theories of normative moral philosophy. The choice of electricity data in an LCA of a conference site with local hydropower production is discussed as an illustration. The two types of LCA can be related to different theories on the characteristics of a good action. Each type of LCA, as well as each of the moral theories, can be criticised from the alternative point of departure. Decisions based on retrospective LCA can have environmentally undesirable consequences. On the other hand, prospective LCA can appear unfair and result in environmentally sub-optimised systems. Both types of LCA also have methodological limitations. We cannot conclude that one type is superior to the other, but the choice of methodology should be consistent with the information sought in the LCA

    Modelling incineration for more accurate comparisons to recycling in PEF and LCA

    Get PDF
    When recycling is beneficial for the environment, results from a life cycle assessment (LCA) should give incentives to collection for recycling and also to the use of recycled material in new products. Many approaches for modeling recycling in LCA assign part of the environmental benefits of recycling to the product where the recycled material is used. For example, the Circular Footprint Formula in the framework for Product Environmental Footprints (PEF) assigns less than 45% of the benefits of recycling to a polymer product sent to recycling. Our calculations indicate that this creates an incorrect climate incentive for incineration of renewable LDPE, when the recovered energy substitutes energy sources with 100–300% more climate impact than the Swedish average district heat and electricity. The risk of incorrect incentives can be reduced through allocating part of the net benefits of energy recovery to the life cycle where the energy is used; we propose this part can be 60% for Sweden, but probably less in countries without a district-heating network. Alternatively, the LCA can include the alternative treatment of waste that is displaced at the incinerator by waste from the investigated product. These solutions both make the LCA more balanced and consistent. The allocation factor 0.6 at incineration almost eliminates the risk of incorrect incentives in a PEF of renewable polymers. However, the focus of LCA on one product at a time might still make it insufficient to guide recycling, which requires concerted actions between actors in different life cycles

    Incentives for recycling and incineration in LCA: Polymers in Product Environmental Footprints

    Get PDF
    For material recycling to occur, waste material from a product life cycle must be made available for recycling and then used in the production of a new product. When recycling is beneficial for the environment, the LCA results should give incentives to collection for recycling and also to the use of recycled material in new products. However, most established methods for modelling recycling in LCA risk giving little or even wrong incentives. Many methods, such as the Circular Footprint Formula (CFF) in a Product Environmental Footprint (PEF), assign some of the environmental benefits of recycling to the product that uses recycled materials. This means that the incentive to send used products for recycling will be lower. If energy recovery also provides an environmental benefit, because the energy recovered substitutes energy supplied with a greater environmental impact, the LCA results may indicate that the waste should instead be sent to incineration – even when recycling is the environmentally preferable option for the society. This study aims to increase the knowledge on the extent to which PEF results, and LCA results in general, risk giving incorrect incentives for energy recovery from plastic waste. Our calculations focus on the climate impact of the recycling and incineration of LDPE waste generated in Sweden. Since this is a pilot study, we use easily available input data only. We estimate the net climate benefit through simple substitution, where recycled material is assumed to replace virgin material and where energy recovered from LDPE waste is assumed to replace average Swedish district heat and electricity. We then apply the CFF to find whether a PEF would give the same indications. Our results show no risk of a PEF or LCA giving incorrect climate incentives for incineration of fossil LDPE. However, an LCA can wrongly indicate that renewable LDPE should be incinerated rather than recycled. Our results indicate this can happen in a PEF when the heat and electricity substituted by incineration has 40-200% more climate impact than the Swedish average district heat and electricity.Our study also aims to increase knowledge about the extent to which correct incentives can be obtained through a more thorough analysis of incineration with energy recovery – specifically, through:\ua0\ua0\ua0 1. a deeper understanding of Factor B, which in the CFF can be used to assign part of the burdens and benefits of energy recovery to the energy instead of the product investigated, but which in the PEF guidelines by default is set to 0, or\ua0\ua0\ua0 2. a broader systems perspective that accounts for the effects of energy recovery on waste imports and thus waste management in other countries.We estimate Factor B based on the observation that waste incineration can be described as a process with multiple jointly determining functions. Waste treatment and energy recovery both contribute to driving investments in incineration. This, in turn, defines the volume of waste incinerated, the quantity of energy recovered, and the quantity of energy substituted. We propose that expected revenues from gate fees and energy are an appropriate basis for calculating Factor B. Up-to-date estimates of the expected revenues in the relevant region should ideally be used for the calculations. Lacking such data,we suggest the value B=0.6 can be used in the CFF when modelling waste incineration in Sweden. Our PEF calculations with Factor B=0.6 indicate such a PEF will identify the environmentally best option for plastic waste management in almost all cases. However, this is at least in part luck: Factor B will vary over time and between locations, and other parts of the CFF varies between materials.To account for the broader systems perspective, we develop two scenarios based on different assumptions on whether change in Swedish waste imports affects the incineration or landfilling in other European countries. The scenarios bring a large uncertainty into the results. This uncertainty is real in the sense that it is difficult to know how a change in Swedish waste imports in the end will affect waste management in other countries. The uncertainty still makes it difficult to draw conclusions on whether renewable LDPE should be recycled or incinerated.Our suggestions for Factor B and European scenarios both make the CFF more balanced and consistent: it now recognizes that not only recycling but alsoenergy recovery depends on more than the flow of waste from the life cycle investigated. However, neither Factor B nor the broader systems perspective amends the fact that LCA tends to focus on one product at a time. This might not be enough to guide a development that requires coordinated or concerted actions between actors in different life cycles – such as increased recycling or energy recovery. Assessing decisions in one product life cycle at a time might in this context be compared to independently assessing the action of clapping one hand. This will most probably not result in an applaud.Besides a more thorough assessment of energy recovery, we also discuss the option to give correct incentives for recycling from LCA by assigning the full environmental benefit of recycling to the product that generates waste for recycling but also to the product where the recycled material is used. We find that this 100/100 approach can give negative LCA results for products produced from recycled material and recycled to a high degree after recycling, because the benefits of recycling are counted twice. The LCA results would indicate that you save material resources by producing and recycling such products without ever using them. The 100/100 approach also lacks additivity, does not model foreseeable consequences, and does not assign a well-defined environmental value to the recovered secondary material.To guide concerted actions, like recycling or energy recovery, it seems systems analysis should ideally assess the necessary actions in combination. Many situations require the environmental impacts to be estimated for a specific product or a specific action. In some cases, however, the LCA results can be calculated and presented with, for example, the following introduction:“When the material is sent to recycling, you will, together with the recycler and the actor using the recycled material, jointly achieve this net environmental benefit: 
”Such joint assessment of supply and demand for secondary materials means the allocation problem is avoided. It is also consistent with the recommendation in the old SETAC “Code of Practice” to assess life cycles with recycling by studying the inputs and outputs from the total linked system

    Allocation in recycling of composites ‐ the case of life cycle assessment of products from carbon fiber composites

    Get PDF
    Purpose Composites consist of at least two merged materials. Separation of these components for recycling is typically an energy-intensive process with potentially significant impacts on the components’ quality. The purpose of this article is to suggest how allocation for recycling of products manufactured from composites can be handled in life cycle assessment to accommodate for the recycling process and associated quality degradations of the different composite components, as well as to describe the challenges involved.Method Three prominent recycling allocation approaches were selected from the literature: the cut-off approach, the end- of-life recycling approach with quality-adjusted substitution, and the circular footprint formula. The allocation approaches were adapted to accommodate for allocation of impacts by conceptualizing the composite material recycling as a separation process with subsequent recycling of the recovered components, allowing for separate modeling of the quality changes in each individual component. The adapted allocation approaches were then applied in a case study assessing the cradle- to-grave climate impact and energy use of a fictitious product made from a composite material that in the end of life is recycled through grinding, pyrolysis, or by means of supercritical water treatment. Finally, the experiences and results from applying the allocation approaches were analyzed with regard to what incentives they provide and what challenges they come with.Results and discussion Using the approach of modeling the composite as at least two separate materials rather than one helped to clarify the incentives provided by each allocation approach. When the product is produced using primary materials, the cut-off approach gives no incentive to recycle, and the end-of-life recycling approach and the circular footprint formula give incentives to recycle and recover materials of high quality. Each of the allocation approaches come with inherent challenges, especially when knowledge is limited regarding future systems as in prospective studies. This challenge is most evident for the circular footprint formula, for example, with regard to the supply and demand balance.Conclusions We recommend modeling the composite materials in products as separate, individual materials. This proved useful for capturing changes in quality, trade-offs between recovering high quality materials and the environmental impact of the recycling system, and the incentives the different approaches provide. The cut-off and end-of-life approaches can both be used in prospective studies, whereas the circular footprint formula should be avoided as a third approach when no market for secondary material is established

    A life cycle assessment framework for large-scale changes in material circularity

    Get PDF
    Increasing material circularity is high on the agenda of the European Union in order to decouple environmental impacts and economic growth. While life cycle assessment (LCA) is useful for quantifying the associated environmental impacts, consistent LCA modeling of the large-scale changes arising from policy targets addressing material circularity (i.e., recycled content and recycling rate) is challenging. In response to this, we propose an assessment framework addressing key steps in LCA, namely, goal definition, functional unit, baseline versus alternative scenario definition, and modeling of system responses. Regulatory and economic aspects (e.g., trends in consumption patterns, market responses, market saturation, and legislative side-policies affecting waste management) are emphasized as critical for the identification of potential system responses and for supporting regulatory interventions required to reach the intended environmental benefits. The framework is recommended for LCA studies focusing on system-wide consequences where allocation between product life cycles is not relevant; however, the framework can be adapted to include allocation. The application of the framework was illustrated by an example of implementing a policy target for 2025 of 70% recycled content in PET trays in EU27+1. It was demonstrated that neglecting large-scale market responses and saturation lead to an overestimation of the environmental benefits from the policy target and that supplementary initiatives are required to achieve the full benefits at system level

    RED, PEF, and EPD: Conflicting rules for determining the carbon footprint of biofuels give unclear signals to fuel producers and customers

    Get PDF
    Biofuel producers and other commodity suppliers are increasingly affected by conflicting rules for life cycle assessment (LCA). They may get multiple requests for LCAs to be used in various contexts, which require the application of different methodological approaches that vary in scope, system boundaries, data demand, and more. This results in increased cost and competence requirements for producers, as well as confusion among other actors including their customers. Differences in methodologies might also lead to various outcomes, conclusions and conflicting guidance regarding which fuels to prioritize or develop. We have analyzed the actual differences when applying three different frameworks: the EU Renewable Energy Directive (RED), the EU framework for Product Environmental Footprints (PEF), and the framework of Environmental Product Declarations (EPD), which have different modeling requirements. We analyzed the methods from a conceptual point of view and also applied the methods to estimate the carbon footprint on a wide range of biofuel production pathways: (i) ethanol from corn, (ii) fatty acid methyl ester (FAME) from rapeseed oil, (iii) biogas from food waste, (iv) hydrogenated vegetable oil (HVO) from rapeseed oil, and (v) HVO from used cooking oil. Results obtained for a specific fuel could differ substantially depending on the framework applied and the assumptions and interpretations made when applying the different frameworks. Particularly, the results are very sensitive to the modeling of waste management when biofuel is produced from waste. Our results indicate a much higher climate impact for, e.g., biogas and HVO produced from used cooking oil when assessed with the PEF framework compared to the other frameworks. This is because PEF assigns at least part of the production of primary materials and energy to the use of recycled material and recovered energy. Developing Category Rules for biofuels for PEF and EPD ought to help clarifying remaining ambiguities
    • 

    corecore