1,460 research outputs found

    Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    Full text link
    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming a recently proposed scenario. We find that a single WR star with initial mass in the range 31-35 Msun fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L/Lsun)~5.55, surface temperature ~45000 K, and mass of ~10.9 Msun at the time of explosion. Our non-rotating 32 Msun model overestimates the derived radius of the progenitor, although this could likely be reconciled with a fine-tuned model of a more massive (between 40 and 50 Msun), hotter, and luminous progenitor. Our models indicate a very uncertain ejecta mass of ~8 Msun, which is higher than the average of the SN Ib ejecta mass that is derived from the lightcurve (2-4 Msun). This possibly high ejecta mass could produce detectable effects in the iPTF13bvn lightcurve and spectrum. If the candidate is indeed confirmed to be the progenitor, our results suggest that stars with relatively high initial masses (>30 Msun) can produce visible SN explosions at their deaths and do not collapse directly to a black hole.Comment: 4 pages, 2 figures, accepted for publication in A&

    Massive star evolution in close binaries:conditions for homogeneous chemical evolution

    Full text link
    We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow during the Main-Sequence phase. We consider the case of rotating stars computed with a strong coupling mediated by an interior magnetic field. In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realized: the initial rotation must be high enough, the loss of angular momentum by stellar winds should be modest. This last point favors metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronization is high enough (typically a time-averaged surface velocities during the Main-Sequence phase above 250 km s−1^{-1}), whatever the mass losses. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favored at higher metallicities. Roche lobe overflow avoidance is favored at lower metallicities due to the fact that stars with less metals remain more compact. We study also the impact of different processes for the angular momentum transport on the surface abundances and velocities in single and close binaries. In models where strong internal coupling is assumed, strong surface enrichments are always associated to high surface velocities in binary or single star models. In contrast, models computed with mild coupling may produce strong surface enrichments associated to low surface velocities. Close binary models may be of interest for explaining homogeneous massive stars, fast rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even at high metallicities.Comment: 21 pages, 13 figures, 3 tables, accepted for publication in Astronomy and Astrophysic

    Taking the self out of self-rule

    Get PDF
    Many philosophers believe that agents are self-ruled only when ruled by their (authentic) selves. Though this view is rarely argued for explicitly, one tempting line of thought suggests that self-rule is just obviously equivalent to rule by the self. However, the plausibility of this thought evaporates upon close examination of the logic of ‘self-rule’ and similar reflexives. Moreover, attempts to rescue the account by recasting it in negative terms are unpromising. In light of these problems, this paper instead proposes that agents are self-ruled only when not ruled by others. One reason for favouring this negative social view is its ability to yield plausible conclusions concerning various manipulation cases that are notoriously problematic for nonsocial accounts of self-rule. A second reason is that the account conforms with ordinary usage. It is concluded that self-rule may be best thought of as an essentially social concept

    Close binary evolution. III. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Full text link
    Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. We study the interactions between the process of wind magnetic braking and tides in close binary systems. We discuss the evolution of a 10 M⊙_\odot star in a close binary system with a 7 M⊙_\odot companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙_\odot star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. (abridged).Comment: 11 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    Children's construction task performance and spatial ability: controlling task complexity and predicting mathematics performance.

    Get PDF
    This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability

    Resolving Vega and the inclination controversy with CHARA/MIRC

    Full text link
    Optical and infrared interferometers definitively established that the photometric standard Vega (alpha Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u,v)-coverage, we find Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and also consistent with the possible rotational period of ~0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10_-0.15 Msun and an age 700-75+150 Myrs, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z=0.006+0.003-0.002).Comment: Accepted for publication in ApJ Letter

    Momentum transfer using chirped standing wave fields: Bragg scattering

    Full text link
    We consider momentum transfer using frequency-chirped standing wave fields. Novel atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure

    High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms

    Full text link
    The van der Waals coefficients for the alkali-metal atoms from Na to Fr interacting in their ground states, are calculated using relativistic ab initio methods. The accuracy of the calculations is estimated by also evaluating atomic static electric dipole polarizabilities and coefficients for the interaction of the atoms with a perfectly conducting wall. The results are in excellent agreement with the latest data from ultra-cold collisions and from studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we provide critically needed data for ultra-cold collision studies
    • …
    corecore