11 research outputs found

    Thermal analysis applied to estimation of solidification kinetics of Al–Si aluminium alloys

    Get PDF
    Evaluation of solidification kinetics by thermal analysis is a useful tool for quality control of Al–Si melts before pouring provided it is rapid and highly reproducible. Series of thermal analysis records made with standard cups are presented that show good reproducibility. They are evaluated using a Newton’s like approach to get the instantaneous heat evolution and from it solidification kinetics. An alternative way of calculating the zero line is proposed which is validated by the fact that the latent heat of solidification thus evaluated is within 5% of the value calculated from thermodynamic data. Solidification kinetics was found highly reproducible provided appropriate experimental conditions were achieved: high enough casting temperature for the cup to heat up to the metal temperature well before solidification starts; and equal and homogeneous temperatures of the metal and of the cup at any time in the temperature range used for integration

    Discussion on “Stable eutectoid transformation in nodular cast iron: modeling and validation”

    Get PDF
    The Minerals, Metals & Materials Society and ASM International 2017 Given that cast irons are multicomponent alloys, the decomposition of the high temperature austenite into ferrite and graphite happens within a finite temperature range and not at an invariant point, as often described schematically. Only a few models explicitly consider the existence of such an austenite–ferrite–graphite range: the contribution under discussion,[1]those that inspired it[2,3] and one previous study from the present author.[4]For kinetics reasons, this latter work explained that ferrite could not grow within the equilibrium three-phase field under continuous cooling; this is in contradiction with the other three reports. The aim of this discussion is first to recall the experimental evidence about ferrite formation during eutectoid transformation of cast iron and then to provide an explanation as to why ferrite starts forming upon cooling only when the temperature of the material is below the equilibrium three-phase field range, as observed experimentally

    Study of the Eutectoid Transformation in Nodular Cast Irons in Relation to Solidification Microsegregation

    Get PDF
    Eutectoid transformation in cast irons may proceed in the stable or the metastable systems giving ferrite and graphite for the former and pearlite for the latter. The present work demonstrates that composition profiles across ferrite/pearlite boundaries are smooth and similar to those issued from the solidification step. No trace of long-range diffusion of substitutional solutes due to austenite decomposition could be observed. In turn, this ascertains that both stable and metastable transformations proceed with the product matrix—either ferrite opearlite—inheriting the parent austenite content in substitutional solutes. This result sustains a physical model for eutectoid transformation based on the so-called local para-equilibrium which is commonly used for describing solid-state transformation in steels
    corecore