10 research outputs found

    Nonlinear magnetoelectric effect in a ferromagnetic-piezoelectric layered structure induced by rotating magnetic field

    Get PDF
    The magnetoelectric (ME) effect induced by a rotating magnetic field, h, in the presence of a dc magnetic field, H 0, is investigated in a disk-shaped ferromagnetic FeBSiC - piezoelectric lead zirconate titanate bilayer structure. It is found that, due to the nonlinear field-dependence of magnetostriction λ(H) in the ferromagnetic layer, voltage harmonics are generated. These harmonics have a specific dependence of their amplitude and phase on H 0 and h, which is different from the case of excitation with a linearly polarized field. A theory is developed that describes characteristics of the ME effect for the cases of weak h â‰Ș H 0 and strong h ≫ H 0 excitation fields. The effect can be employed in designing highly sensitive sensors of permanent and alternating magnetic fields. </p

    Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    No full text
    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20–200 ÎŒm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 ÎŒm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant Δ, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n) of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices

    Water clouds and dust aerosols observations with PFS MEX at Mars

    No full text
    International audienceObservations of water ice clouds and dust are among the main scientific goals of the Planetary Fourier Spectrometer (PFS), a payload instrument of the European Mars Express mission. We report some results, obtained in three orbits: 37, 41 and 68. The temperature profile, and dust and water ice cloud opacities are retrieved from the thermal infrared (long-wavelength channel of PFS) in a self-consistent way using the same spectrum. Orographic ice clouds are identified above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Both volcanoes were observed near noon at Ls=337° and 342°, respectively. The effective radius of ice particles is preliminary estimated as 1-3 mum, changing along the flanks. The corresponding visual opacity changes in the interval 0.2-0.4 above Olympus and 0.1-0.6 above Ascraeus Mons. In the case of Ascraeus Mons, the ice clouds were observed mainly above the Southern flank of the volcano with maximum opacity near the summit. In the case of Olympus, the clouds were found above both sides of the top. A different type of ice cloud is observed at latitudes above 50°N (orbit 68) in the polar hood: the effective particle radius is estimated to be 4 mum. Below the 1 mb level an inversion in the temperature profiles is found with maximum temperature at around 0.6 mb. Along orbit 68 it appears above Alba Patera, then it increases to the north and decreases above the CO 2 polar cap. Beginning from latitude 20°S above Tharsis (orbit 68), the ice clouds and dust contribute equally to the spectral shape. Further on, the ice clouds are found everywhere along orbit 68 up to the Northern polar cap, except the areas between the Northern flank of Ascraeus Mons (below 10 km) and the edge of Alba Patera. Orbit 41 is shifted from the orbit 68 by roughly 180° longitude and passes through Hellas. Ice clouds are not visible in this orbit at latitudes below 80°S. The dust opacity is anticorrelated with the surface altitude. From 70°S to 25°N latitude the vertical dust distribution follows an exponential law with a scale height of 11.5±0.5 km, which corresponds to the gaseous scale height near noon and indicates a well-mixed condition. The 9 mum dust opacity, reduced to zero surface altitude, is found to be 0.25±0.05, which corresponds to a visual opacity of 0.5-0.7 (depending on the particle size)

    The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission

    No full text
    International audienceThe Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to 8200.0cm-1 (1.2- 5.5mum) and a long-wave (LW) channel that covers 250- 1700cm-1 (5.5- 45mum). Both channels have a uniform spectral resolution of 1.3cm-1. The instrument field of view FOV is about 1.6o (FWHM) for the Short Wavelength channel (SW) and 2.8o (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction. The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric ( LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side
    corecore