6 research outputs found

    Mesh topology design in overlay virtual private network

    Get PDF
    The mesh topology design problem in overlay virtual private networks is studied. Given a set of customer nodes and an associated traffic matrix, tunnels that connect node pairs through a service provider network are determined such that the total multi-hopped traffic is minimised. A tabu search based heuristic is proposed

    Scheduling in a three-machine robotic flexible manufacturing cell

    Get PDF
    In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new robot move cycle which is a direct consequence of process and operational flexibility of CNC machines. We prove that this proposed cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles. We also present a worst case performance bound of using this proposed cycle. © 2005 Elsevier Ltd. All rights reserved

    Pure cycles in flexible robotic cells

    Get PDF
    In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines. © 2007 Elsevier Ltd. All rights reserved

    A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations

    Get PDF
    We study the vehicle routing problem with roaming delivery locations in which the goal is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which a customer order has to be delivered to the trunk of the customer's car during the time that the car is parked at one of the locations in the (known) customer's travel itinerary. We formulate the problem as a set-covering problem and develop a branch-and-price algorithm for its solution. The algorithm can also be used for solving a more general variant in which a hybrid delivery strategy is considered that allows a delivery to either a customer's home or to the trunk of the customer's car. We evaluate the effectiveness of the many algorithmic features incorporated in the algorithm in an extensive computational study and analyze the benefits of these innovative delivery strategies. The computational results show that employing the hybrid delivery strategy results in average cost savings of nearly 20% for the instances in our test set. © 2017 Elsevier Lt
    corecore