22 research outputs found
The Development of a Methodology to Understand Climate-induced Damage in Decorated Oak Wood Panels
Climate-induced damage in decorated oak wood panels is considered to be a high risk for pre-eminent museum collections. To advise museums on the development of sustainable future preservation strategies and rational guidelines for indoor climate specifications, the risk of this type of damage – physical and mechanical is analysed in full depth in this research. A
comprehensive methodology is required that meets the requests of the conservation community and also helps to bridge the gap between scientists and conservators. Therefore, this research couples an extensive examination of empirical data obtained from naturally aged museum objects, i.e. a collection analysis, with numerical modelling and experimental testing. A multidisciplinary collaboration has been initiated, whereby conservators and scientists are working together to fulfil the common objectives of sustainable and low-risk preservation of valuable museum collections. In this paper, the methodology is outlined and some results are presented
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)
The development of a methodology to understand climate-induced damage in decorated oak wood panels
Climate-induced damage in decorated oak wood panels is considered to be a high risk for pre-eminent museum collections. To advise mu¬seums on the development of sustainable fu-ture preservation strategies and rational guide¬lines for indoor climate specifications, the risk of this type of damage – physical and mechanical – is analysed in full depth in this research. A comprehensive methodology is required that meets the requests of the conservation com-munity and also helps to bridge the gap be¬tween scientists and conservators. Therefore, this research couples an extensive examination of empirical data obtained from naturally aged museum objects, i.e. a collection analysis, with numerical modelling and experimental testing. A multidisciplinary collaboration has been initi¬ated, whereby conservators and scientists are working together to fulfil the common objec¬tives of sustainable and low-risk preservation of valuable museum collections. In this paper, the methodology is outlined and some results are presented
Climate4Wood: climate effects on decorated wooden panels
Damage caused by fluctuations in museum climate is regarded as one of the main risks to museum collections. Therefore very strict standards for climate specifications have developed, leading to high implementation and energy costs. Based on research done since the 1990's, these specifications are now seen as unrealistic and unnecessarily strict, however, extensive research is required to convince the conservation community that these specifications can be relaxed without causing damage to susceptible objects, such as wooden panels (paintings and furniture). The aim of the Climate4Wood proposal is (1) to identify the RH fluctuations that decorated wooden panels can safely sustain (the 'allowable' fluctuations) and (2) in consequence to develop rational guidelines for the climate specifications in the museums. Therefore it is important to understand the response of wooden panels and the damage failure criteria. The project outcome enables the development of a decision-making model that will help museums to become more sustainable, by balancing the cost and preservation of the collection. Based on a museum study (PhD 1), consisting of a systematic analysis of a collection of decorated panels, reconstructions will be made to measure the hygrothermal properties of oak. The results are used as input for a material and mechanical modeling study (PhD 2), to model climate and age induced stresses and deformations. A postdoc will determine and model the relevant non linear elastic material properties. It is expected that combining this information will help museums throughout the world to develop rational guidelines for climate specifications
Assessment of climate induced damage in decorated oak wooden panels
Climate induced damage in decorated oak wooden panels is considered to be a high risk for the preeminent museum collections. To advise museums on the development of future sustainable preservation strategies and to define rational guidelines for indoor climate specifications, climate induced physical and mechanical damage has been analysed in a collection study, experimental testing of mock-ups and by finite element modelling. The collection study consisted of the development of a comprehensive methodology to select objects of interest from the collection and analyse their condition using a combination of visual inspection and archival searches. Mock-up samples of wooden panels with representative structural elements were exposed to varying climate conditions in climate controlled rooms and monitored with state-of-the-art experimental mechanics equipment. Further the collection study and experimental testing were used to inform the development of a finite element model of crack growth under 3-point bending. The work was performed within the Cimate4Wood project, a multidisciplinary collaboration between conservators and scientists work. The paper presents the methodology of the museum study and results from the museum study, experimental testing and modelling.Structural Integrity & Composite