3 research outputs found

    Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.The dispersions of semiconducting (sc-) and metallic (m-) SWCNTs with purity more than 98 and 86%, correspondingly, were obtained by using the aqueous two-phase extraction method. The unseparated (un-) SWCNTs contained ~3/4 of semiconducting and ~1/4 of metallic nanotubes. Thin films based on unseparated, semiconducting and metallic SWCNTs were prepared by vacuum filtration method. An Atomic Force Microscopy (AFM) and a Transmission Electronic Microscopy (TEM) were used to investigate the thin film microstructure. The thin SWCNT film transmittance was measured in the wavelength range of 300–1500 nm. Thermoelectric properties were carried out in the temperature range up to 200 Β°C. The largest Seebeck coefficient was observed for thin films based on semiconducting SWCNTs. The maximum value was 98 ΞΌV/K under the temperature of 170 Β°C. The lowest resistivity was 7.5Β·10βˆ’4Β·OhmΒ·cm at room temperature for thin un-SWCNT films. The power factor for m-SWCNT and un-SWCNT films was 47 and 213 ΞΌWmβˆ’1 Kβˆ’2, correspondingly, at room temperature and 74 and 54 ΞΌWmβˆ’1 Kβˆ’2 at 200 Β°C, respectively. For a thin sc-SWCNT film the maximum power factor was 2.8 ΞΌWmβˆ’1 Kβˆ’2 at 160 Β°C. The un-SWCNT film thermal conductivity coefficient was 5.63 and 3.64Wmβˆ’1 Kβˆ’1 and a thermoelectric figure of merit was 0.011 and 0.016 at temperatures of 23 and 50 Β°C, respectively

    ВСмпСратурная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ фотопроводимости ΠΈ оптичСскиС свойства Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ In2O3, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π²Ρ‚ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ окислСния

    No full text
    The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further de- creased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by 25% and from 300 to 95 K, and continued to decrease by 38% with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 Ξ©/s for the first 30 seconds and 7 Ξ©/s for the remaining time. The transmittance decreased by 3.1% at a wavelength of 6.3 m after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreductionΠ­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдовано влияниС ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ (Π£Π€) излучСния ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° элСктричСскиС ΠΈ оптичСскиС свойства ΠΏΠ»Π΅Π½ΠΎΠΊ In2O3, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π²Ρ‚ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ окислС- ния. ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ Π² Ρ‚Π΅ΠΌΠ½ΠΎΡ‚Π΅ сопротивлСниС ΠΏΠ»Π΅Π½ΠΊΠΈ мСнялось Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚Ρƒ- Ρ€Π°Ρ… ΠΎΡ‚ 300 Π΄ΠΎ 95 К ΠΈ Π±ΠΎΠ»Π΅Π΅ Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΠΏΡ€ΠΈ дальнСйшСм ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Под воздСйствиСм УЀ–облучСния ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ΅ сопротивлСниС ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Ρ€Π΅Π·ΠΊΠΎ снизилось Π½Π° 25 %, ΠΎΡ‚ 300 Π΄ΠΎ 95 К, ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π»ΠΎ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒΡΡ Π΄ΠΎ 38% с дальнСйшим ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°- Ρ‚ΡƒΡ€Ρ‹. ΠŸΡ€ΠΈ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ УЀ–источника Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ сопротивлСния рСлаксировало со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 15 Ом/с Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… 30 сСкунд ΠΈ 7 Ом/с Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡΡ‚Π°Π²ΡˆΠ΅Π³ΠΎΡΡ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ПослС прСкращСния облучСния коэффициСнт пропускания снизился Π½Π° 3,1% ΠΏΡ€ΠΈ Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ 6,3 ΠΌΠΊΠΌ. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π΅- лаксации коэффициСнта пропускания составила 0,006 %/с. РСлаксации элСктричСского сопротив- лСния ΠΈ коэффициСнта пропускания послС прСкращСния УЀ–облучСния Π±Ρ‹Π»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΡ€Π΅Π΄- полагаСтся, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ, отвСтствСнным Π·Π° измСнСния проводимости Π² ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… оксида индия Π² процСссС Π£Π€-облучСния, Π±Ρ‹Π»ΠΎ фотовосстановлСни

    ВСмпСратурная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ фотопроводимости ΠΈ оптичСскиС свойства Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ In2O3, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π²Ρ‚ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ окислСния

    No full text
    The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further de- creased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by 25% and from 300 to 95 K, and continued to decrease by 38% with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 Ξ©/s for the first 30 seconds and 7 Ξ©/s for the remaining time. The transmittance decreased by 3.1% at a wavelength of 6.3 m after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreductionΠ­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдовано влияниС ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ (Π£Π€) излучСния ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° элСктричСскиС ΠΈ оптичСскиС свойства ΠΏΠ»Π΅Π½ΠΎΠΊ In2O3, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π²Ρ‚ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ окислС- ния. ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ Π² Ρ‚Π΅ΠΌΠ½ΠΎΡ‚Π΅ сопротивлСниС ΠΏΠ»Π΅Π½ΠΊΠΈ мСнялось Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚Ρƒ- Ρ€Π°Ρ… ΠΎΡ‚ 300 Π΄ΠΎ 95 К ΠΈ Π±ΠΎΠ»Π΅Π΅ Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΠΏΡ€ΠΈ дальнСйшСм ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Под воздСйствиСм УЀ–облучСния ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ΅ сопротивлСниС ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Ρ€Π΅Π·ΠΊΠΎ снизилось Π½Π° 25 %, ΠΎΡ‚ 300 Π΄ΠΎ 95 К, ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π»ΠΎ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒΡΡ Π΄ΠΎ 38% с дальнСйшим ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°- Ρ‚ΡƒΡ€Ρ‹. ΠŸΡ€ΠΈ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ УЀ–источника Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ сопротивлСния рСлаксировало со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 15 Ом/с Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… 30 сСкунд ΠΈ 7 Ом/с Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡΡ‚Π°Π²ΡˆΠ΅Π³ΠΎΡΡ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ПослС прСкращСния облучСния коэффициСнт пропускания снизился Π½Π° 3,1% ΠΏΡ€ΠΈ Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ 6,3 ΠΌΠΊΠΌ. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π΅- лаксации коэффициСнта пропускания составила 0,006 %/с. РСлаксации элСктричСского сопротив- лСния ΠΈ коэффициСнта пропускания послС прСкращСния УЀ–облучСния Π±Ρ‹Π»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΡ€Π΅Π΄- полагаСтся, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ, отвСтствСнным Π·Π° измСнСния проводимости Π² ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… оксида индия Π² процСссС Π£Π€-облучСния, Π±Ρ‹Π»ΠΎ фотовосстановлСни
    corecore