16 research outputs found

    Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology

    Get PDF
    In recent decades, there has been an increase in the prevalence of overweight and obesity. Obesity has become an underestimated pandemic and a public health threat around the world. Adipose tissue is positioned as an endocrine organ that secretes a wide range of pro-inflammatory cytokines and adipokines, inducing a state of chronic subinflammation. The results of epidemiological studies over the past 30 years have also shown that visceral adipose tissue is an independent risk factor for the development of atherosclerosis, cardiometabolic diseases and chronic kidney disease. We performed a systematic review to summarize important aspects of the state of chronic subinflammation in the context of its effect on the decrease in glomerular filtration rate and the development of chronic kidney disease. The review deals with the etiology and pathogenesis of obesity, the hormonal profile of adipose tissue, the molecular mechanisms of the effect of pro-inflammatory cytokines and adipokines on the kidneys, and the pathophysiology of renal diseases. Information on the topic from publications based on the Pubmed database has been used

    REFLECTION OF LABOR MARKET INTERESTS AND EXPECTATIONS IN EDUCATIONAL ORDER FOR CONTEMPORARY SCHOOL

    Get PDF
    Purpose of the study: The main objective of the study was the analysis of key labor market request content for the secondary education system, the level of employers' expectations compliance and actual learning outcomes, the research of resources and partnership interaction limitations of all interesting subjects in the process of an educational order development. Methodology: The main method was the questionnaire survey of experts (individual entrepreneurs, the heads of industrial and structural divisions) of Moscow (N = 316). The results of the expert survey showed the interest of employers in close cooperation with school in order to reflect the interests of the labor market in the educational order adequately. Results: The most motivated group is a small business, the leaders of the lowest level in the sphere of trade and service, who directly interact with the school graduates in the process of their early start of labor activity. The experts noted the problems in the development of the social competencies among schoolchildren: excessive self-esteem, an excessive level of claims, low level of willingness to work in a team, the lack of such qualities as responsiveness and responsibility. The cooperation between school and employers is limited to traditional sponsorship practices. The interaction of employers and educational institutions is quite fragmentary, it depends on a variety of random factors (personal and situational motives), which does not ensure the stability and the effectiveness of social partnership. Applications of this study: This research can be used for the universities, teachers, and students. Novelty/Originality of this study: In this research, the model of Reflection of Labor Market Interests and Expectations in Educational Order for Contemporary School is presented in a comprehensive and complete manner

    Human APP Gene Expression Alters Active Zone Distribution and Spontaneous Neurotransmitter Release at the Drosophila Larval Neuromuscular Junction

    Get PDF
    This study provides further insight into the molecular mechanisms that control neurotransmitter release. Experiments were performed on larval neuromuscular junctions of transgenic Drosophila melanogaster lines with different levels of human amyloid precursor protein (APP) production. To express human genes in motor neurons of Drosophila, the UAS-GAL4 system was used. Human APP gene expression increased the number of synaptic boutons per neuromuscular junction. The total number of active zones, detected by Bruchpilot protein puncta distribution, remained unchanged; however, the average number of active zones per bouton decreased. These disturbances were accompanied by a decrease in frequency of miniature excitatory junction potentials without alteration in random nature of spontaneous quantal release. Similar structural and functional changes were observed with co-overexpression of human APP and β-secretase genes. In Drosophila line with expression of human amyloid-β42 peptide itself, parameters analyzed did not differ from controls, suggesting the specificity of APP effects.These results confirm the involvement of APP in synaptogenesis and provide evidence to suggest that human APP overexpression specifically disturbs the structural and functional organization of active zone and results in altered Bruchpilot distribution and lowered probability of spontaneous neurotransmitter release

    Soluble Cyanobacterial Carotenoprotein as a Robust Antioxidant Nanocarrier and Delivery Module

    Get PDF
    To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet–purple protein samples. We characterize the spectroscopic properties of the obtained pigment–protein complexes and the thermodynamics of liposome–protein carotenoid transfer and demonstrate the delivery of carotenoid echinenone from AnaCTDH into liposomes with an efficiency of up to 70 ± 3%. Most importantly, we show efficient carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species (ROS). Incubation of neuroblastoma cell line Tet21N in the presence of 1 μM AnaCTDH binding echinenone decreased antimycin A ROS production by 25% (p < 0.05). The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.BMBF, 01DJ15007, Carotenoidbindende photoschaltbare Proteine: Lichtinduzierte Dynamik und Anwendungen in modernen mikroskopischen Verfahre

    rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19

    Get PDF
    IntroductionNumerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis.MethodsIn current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing.Results and discussionsA P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants

    Drosophila Lysophospholipase Gene swiss cheese Is Required for Survival and Reproduction

    No full text
    Drosophila melanogaster is one of the most famous insects in biological research. It is widely used to analyse functions of different genes. The phosphatidylcholine lysophospholipase gene swiss cheese was initially shown to be important in the fruit fly nervous system. However, the role of this gene in non-nervous cell types has not been elucidated yet, and the evolutional explanation for the conservation of its function remains elusive. In this study, we analyse expression pattern and some aspects of the role of the swiss cheese gene in the fitness of Drosophila melanogaster. We describe the spatiotemporal expression of swiss cheese throughout the fly development and analyse the survival and productivity of swiss cheese mutants. We found swiss cheese to be expressed in salivary glands, midgut, Malpighian tubes, adipocytes, and male reproductive system. Dysfunction of swiss cheese results in severe pupae and imago lethality and decline of fertility, which is impressive in males. The latter is accompanied with abnormalities of male locomotor activity and courtship behaviour, accumulation of lipid droplets in testis cyst cells and decrease in spermatozoa motility. These results suggest that normal swiss cheese is important for Drosophila melanogaster fitness due to its necessity for both specimen survival and their reproductive success

    A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin

    No full text
    Three microperoxidases-hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)-have been prepared as models for heme-containing peroxidases by condensation Of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R = vinyl, MGGH: R = ethyl, DGGH: R = H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S = 5/2 signal at g(perpendicular to) = 6 and g(parallel to) = 2 and an estimated D value of 7.5 +/- 1 cm(-1). The catalytic activities of the microperoxidases towards K-4[Fe(CN)(6)], L-tyrosine methyl ester and 2,2'-azino(bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) have been investigated. It was found that all three microperoxidases exhibit peroxidase activity and that the reactions follow the generally accepted peroxidase reaction scheme [Biochem. J. 145 (1975) 93-103] with the exception that the initial formation of a Compound I analogue is the rate-limiting step for the whole process. The general activity trend was found to be MGGH approximate to DGGH > HGGH. For each microperoxidase, DFT calculations (B3LYP) were made on the reactions of compounds 0, I and II with H+, e(-) and H+ + e(-), respectively, in order to probe the possible relationship between the nature of the 2- and 4-substituents of the hemin and the observed reactivity. The computational modeling indicates that the relative energy differences are very small; solvation and electrostatic effects may be factors that decide the relative activities of the microperoxidases. (C) 2005 Elsevier Inc. All rights reserved

    Two Subpopulations of Human Monocytes That Differ by Mitochondrial Membrane Potential

    No full text
    Atherosclerosis is associated with a chronic local inflammatory process in the arterial wall. Our previous studies have demonstrated the altered proinflammatory activity of circulating monocytes in patients with atherosclerosis. Moreover, atherosclerosis progression and monocyte proinflammatory activity were associated with mitochondrial DNA (mtDNA) mutations in circulating monocytes. The role of mitochondria in the immune system cells is currently well recognized. They can act as immunomodulators by releasing molecules associated with bacterial infection. We hypothesized that atherosclerosis can be associated with changes in the mitochondrial function of circulating monocytes. To test this hypothesis, we performed live staining of the mitochondria of CD14+ monocytes from healthy donors and atherosclerosis patients with MitoTracker Orange CMTMRos dye, which is sensitive to mitochondrial membrane potential. The intensity of such staining reflects mitochondrial functional activity. We found that parts of monocytes in the primary culture were characterized by low MitoTracker staining (MitoTracker-low monocytes). Such cells were morphologically similar to cells with normal staining and able to metabolize 5-aminolevulinic acid and accumulate the heme precursor protoporphyrin IX (PplX), indicative of partially preserved mitochondrial function. We assessed the proportion of MitoTracker-low monocytes in the primary culture for each study subject and compared the results with other parameters, such as monocyte ability to lipopolysaccharide (LPS)-induced proinflammatory activation and the intima-media thickness of carotid arteries. We found that the proportion of MitoTracker-low monocytes was associated with the presence of atherosclerotic plaques. An increased number of such monocytes in the primary culture was associated with a reduced proinflammatory activation ability of cells. The obtained results indicate the presence of circulating monocytes with mitochondrial dysfunction and the association of such cells with chronic inflammation and atherosclerosis development

    Refractory and resistant hypertension in patients with type 2 diabetes mellitus: differences in metabolic profile and endothelial function

    Get PDF
    Aim. To determine the prevalence of refractory hypertension (RfH) in patients with and without type 2 diabetes mellitus (DM), as well as to evaluate whether diabetic patients with RfH significant differ from those with uncontrolled resistant hypertension (RH) in clinical phenotype, metabolic profile and endothelial function. Materials and methods. The study included 193 patients with RH: RH 74 patients with diabetes and 119 patients without DM. Uncontrolled RH and RfH were defined by the presence of uncontrolled blood pressure BP (140 and/or 90 mm Hg) despite the use of 3 but 5 antihypertensive drugs (for RH) and 5 antihypertensive drugs, including a mineralocorticoid receptor antagonist (for RfH). Clinical examination, lab tests were performed. Flow-mediated dilation (FMD) and vasoreactivity of middle cerebral artery (MCA) using both breath-holding and hyperventilation test were measured by high-resolution ultrasound. Results. The prevalence of refractory hypertension in patients with and without DM was similar (30% vs 28%, respectively). No differences in BP levels, data of echocardiography and clinical phenotype were found between the diabetic groups, but value of HOMA index, plasma resistin level and postprandial glycaemia were higher in patients with RfH. FMD and MCA reactivity to the breath-holding test were worse in patients with RfH, and they had a more pronounced vasoconstrictor response of MCA to the hyperventilation test compared to patients with RH. Conclusion. The prevalence of RfH is the same in patients with and without diabetes. Diabetic patients with refractory hypertension have a more unfavorable metabolic profile and greater impairment of endothelial function than patients with uncontrolled resistant hypertension

    Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants

    No full text
    Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection
    corecore