20 research outputs found

    ANALISIS KECELAKAAN STEAM GENERA TOR TUBE RUPTURE (SGTR) DAN PENGISOLASIANNYA PADA PWR

    Get PDF
    ANALISIS KECELAKAAN STEAM GENERATOR TUBE RUPTURE (SGTR) DANPENGISOLASIANNYA PADA PWR. Telah dilakukan analisis kecelakaan SGTR serta pengisolasiannya pada PWR dengan menggunakan program perhitungan RELAP/SCDAP. Dalam analisis ini, digunakan PWR standaryang mengacu pada PLTN Tsuruga Unit 2 sebagai model. Analisis dilakukan pada hasil simulasi SGTR berdasarkan data input RELAP yang dibuat NUPEC, dimana respon sistem kendali reaktor sepenuhnyabergantung pada setting otomatis. Kendali manual hanya dilakukan untuk meneapai pengisolasian kebocoran.Dari hasil simulasi terlihat adanya respon sistem kendali reaktor terhadap kebocoran melalui SGTR sesuai skenario yang diharapkan seperti trip reaktor, aktuasi sistem kendali air umpan, sistem kendali bypass turbin,sistem kendali pembebas uap, dan aktuasi injeksi keselamatan. Dengan asumsi terjadi kegagalan pengisolasian kebocoran pada tahap awal, air umpan di sisi sekunder memenuhi kubah uap di pembangkit uap yang bocor maupun yang utuh sehingga memicu terbukanya katup pembebas uap (MSR V) dan terlepasnya produk fisi secara berlebihan ke lingkungan. Namun pengisolasian kebocoran melalui aktuasi katup pembebas pressurizer (PORV) yang diikuti dengan penghentian injeksi keselamatan secara manual berhasil dilakukan. Skenario yang diperoleh memperlihatkan perlunya modifikasi pada beberapa sistem kendali reaktor di atas agar dapat dijalankan seeara manual sehingga sekuensi kecelakaan yang diperoleh dapat lebih mirip dengan yang ada dalamreferensi

    EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA

    Get PDF
    Kecelakaan Putusnya Jalur Uap Utama (Main Steam Line Break Accident) merupakansalah satu jenis Kecelakaan Basis Desain (DBA). Kecelakaan ini perlu dianalisis dan dievaluasi dalam desainuntuk menetapkan persyaratan kinerja struktur, sistem dan komponen reaktor. Pada umumnya, efek serius yangperlu diperhatikan dalam kecelakaan ini adalah kemungkinan terjadinya kondisi return to power dan high localpower peaking yang dapat merusak batang bahan bakar. Berbeda dengan kecelakaan DBA lain, seperti LOCAmisalnya, kecelakaan ini dapat terjadi di dalam pengungkung dan dapat pula terjadi di luar pengungkung.Terdapat sekuensi dan dampak yang berbeda dari kedua skenario kecelakaan tersebut terhadap reaktor.Makalah ini mengevaluasi hasil simulasi dan perhitungan kecelakaan ini dengan menggunakan RELAP5/SCDAP/Mod3.2. Berdasarkan hasil evaluasi dapat diidentifikasi dan dibandingkan dampak-dampak kritisterhadap reaktor antara kejadian di dalam pengungkung dan di luar pengungkung

    ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA

    Get PDF
    ABSTRAK ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA. Kecelakaan yang diakibatkan oleh kehilangan pendingin (loss of coolant accident / LOCA) dari sistem reaktor merupakan kejadian dasar desain yang tetap diantisipasi dalam desain reaktor daya yang mengadopsi teknologi Generasi II hingga IV. LOCA ukuran kecil (small break LOCA) memiliki dampak yang lebih signifikan terhadap keselamatan dibandingkan LOCA ukuran besar (large break LOCA) seperti terlihat pada kejadian Three-Mile Island (TMI). Fokus makalah adalah pada analisis small break LOCA pada reaktor daya maju Generasi III+ yaitu AP1000 dengan mensimulasikan tiga kejadian pemicu yaitu membukanya katup Automatic Depressurization System (ADS) secara tak disengaja, putusnya salah satu pipa Direct Vessel Injection (DVI) secara double-ended, dan putusnya pipa lengan dingin dengan diameter bocoran 10 inci. Metode yang digunakan adalah simulasi kejadian pada model AP1000 yang dikembangkan secara mandiri menggunakan program perhitungan RELAP5/SCDAP/Mod3.4. Dampak yang ingin dilihat adalah kondisi teras selama terjadinya small break LOCA yang terdiri dari pembentukan mixture level dan transien temperatur kelongsong bahan bakar. Hasil simulasi menunjukkan bahwa mixture level untuk semua kejadian small break LOCA berada di atas tinggi teras aktif yang menunjukkan tidak terjadinya core uncovery. Adanya mixture level berpengaruh pada transien temperatur kelongsong yang menurun dan menunjukkan pendinginan bahan bakar yang efektif. Hasil di atas juga identik dengan hasil perhitungan program lain yaitu NOTRUMP. Keefektifan pendinginan teras juga disebabkan oleh berfungsinya injeksi pendingin melalui fitur keselamatan pasif yang menjadi ciri reaktor daya AP1000. Secara keseluruhan, hasil analisis menunjukkan model AP1000 yang telah dikembangkan dengan RELAP5 dapat digunakan untuk keperluan analisis kecelakaan dasar desain pada reaktor daya maju AP1000. Kata kunci: analisis, mixture level, temperatur kelongsong, small break LOCA, RELAP5.  ABSTRACT ANALYSIS ON THE CORE CONDITION OF AP1000 ADVANCED POWER REACTOR DURING SMALL BREAK LOCA. Accident due to the loss of coolant from the reactor boundary is an anticipated design basis event in the design of power reactor adopting the Generation II up to IV technology. Small break LOCA leads to more significant impact on safety compared to the large break LOCA as shown in the Three-Mile Island (TMI). The focus of this paper is the small break LOCA analysis on the Generation III+ advanced power reactor of AP1000 by simulating three different initiating events, which are inadvertent opening of Automatic Depressurization System (ADS), double-ended break on one of Direct Vessel Injection (DVI) pipe, and 10 inch diameter split break on one of cold leg pipe. Methodology used is by simulating the events on the AP1000 model developed using RELAP5/SCDAP/Mod3.4. The impact analyzed is the core condition during the small break LOCA consisting of the mixture level occurrence and the fuel cladding temperature transient. The results show that the mixture level for all small break LOCA events are above the active core height, which indicates no core uncovery event. The development of the mixture level affect the fuel cladding temperature transient, which shows a decreasingly trend after the break, and the effectifeness of core cooling. Those results are identical with the results of other code of NOTRUMP. The resulted core cooling is also due to the function of coolant injection from passive safety feature, which is unique in the AP1000 design. In overall, the result of analysis shows that the AP1000 model developed by the RELAP5 can be used for analysis of design basis accident considered in the AP1000 advanced power reactor. Keywords: analysis, mixture level, fuel cladding temperature, small break LOCA, RELAP5

    PRELIMINARY STUDY ON RELAP5 SIMULATION OF DVI LINE BREAK ACCIDENT IN THE ATLAS FACILITY USING BEST ESTIMATE PLUS UNCERTAINTY METHOD

    Get PDF
    The Best Estimate plus Uncertainty (BEPU) is a methodology, which was introduced in the deterministic safety analysis to evaluate limitations of codes in simulating realistic plant behavior by providing quantified uncertainty bands of calculation results. It has been already widely accepted in licensing nuclear power plant by regulatory bodies of United States (USNRC), Argentina, and Canada. The uncertainty evaluation in the BEPU method is performed by different approaches such as GRS, IRSN, ENUSA, AEAT, and UNIPI. Due to the complexity of other approaches, the purpose of this study is to present some key aspects of the BEPU process using the GRS methodology by selecting the ATLAS test facility to simulate 50% break of DVI line since any safety analysis performed so far was using deterministic best estimate approach only. As comparison of the best estimate simulation performed by RELAP5/SCDAP/Mod3.4, experimental data related to the event was used. After 100 simulations,  the uncertainty bands of peak heater of clad temperature and primary pressure transient obtained were only in a close agreement with the experimental data in the earlier period and less than 250 seconds during the transient condition. Therefore the overall accuracy of the best estimate simulation plays a key role on the final results of the uncertainty analysis because the propagation of any discrepancy in the best estimate with the experimental data will occur throughout the simulation. After that, selecting the important parameters to be randomly generated needs to be performed carefully by studying the important phenomena related to the event analyzed and associated plant model.Keywords: best estimate plus uncertainty, DVI line break, ATLAS facility, RELAP5, simulation STUDI AWAL SIMULASI KECELAKAAN PUTUSNYA JALUR DVI PADA FASILITAS ATLAS MENGGUNAKAN RELAP5 DENGAN METODE ESTIMASI TERBAIK DAN KETIDAKPASTIAN. Metode Best estimate plus uncertainty (BEPU) adalah metode analisis keselamatan deterministik yang bertujuan untuk melakukan evaluasi keterbatasan program perhitungan dalam mensimulasikan sifat-sifat fisis instalasi secara realistik dengan mengkuantifikasi rentang ketidakpastian dari hasil perhitungan. Metode tersebut telah diterima secara luas dalam perijinan PLTN oleh badan pengatur dunia seperti di Amerika (USNRC), di Argentina, dan Kanada. Evaluasi ketidakpastian dalam metode BEPU dilakukan dengan beberapa metode yang berbeda seperti GRS, IRSN, ENUSA, AEAT, dan UNIPI. Atas dasar kompleksitas metode-metode yang lain, tujuan makalah ini adalah untuk menggambarkan aspek penting dari proses BEPU dengan metode GRS dengan melakukan simulasi putusnya jalur DVI sebesar 50% luasan pada fasilitas ATLAS karena analisis keselamatan yang dilakukan selama ini baru berupa perkiraan terbaik secara deterministik. Sebagai perbandingan dari simulasi perkiraan terbaik yang dilakukan dengan RELAP5/SCDAP/Mod3.4 digunakan data-data eksperimen yang telah terdokumentasi. Setelah dilakukan 100 simulasi, rentang ketidakpastian dari transien temperatur puncak kelongsong pemanas dan tekanan primer hanya mendekati data eksperimen pada 250 detik di periode awal. Oleh karena itu keakuratan dari simulasi perkiraan terbaik secara keseluruhan memiliki peranan penting pada hasil akhir dari analisis ketidakpastian karena perambatan perbedaan dengan data eksperimen akan terus terjadi selama simulasi. Setelah itu, pemilihan parameter yang penting untuk dikembangkan secara random harus dilakukan secara cermat dengan mempelajari fenomena-fenomena penting yang terkait dengan kejadian yang dianalisis dan model instalasinya.Kata kunci: perkiraan terbaik dan ketidakpastian, putusnya jalur DVI, fasilitas ATLAS, RELAP5, simulas

    ANALISIS KEJADIAN STEAM GENERATOR TUBE RUPTURE (SGTR) BERDASARKAN SKENARIO MIHAMA UNIT 2

    Get PDF
    Pada tanggal 9 Februari 1991, terjadi kecelakaan putusnya pipa pemanas pembangkit uap (Steam Generator Tube Rupture/SGTR) pada PLTN Mihama Unit 2. Dari kejadian tersebut, diperoleh catatan sekuensi kecelakaan berupa aktuasi sistem proteksi dan fitur keselamatan terekayasa dalam memitigasi kebocoran dari sistem primer ke sistem sekunder. Urutan sekuensi tersebut kemudian diterapkan pada PWR standar Jepang untuk disimulasikan menggunakan program perhitungan RELAP5/SCDAP/Mod3.2. Tujuannya untuk mengevaluasi konsekuensi yang terjadi bila kecelakaan tersebut terjadi pada PWR standar Jepang. Parameter yang dibandingkan adalah laju alir kebocoran, perubahan tekanan primer dan sekunder dan perubahan level di dalam pressurizer. Hasil simulasi menunjukkan perbedaan lama waktu kejadian SGTR hingga berhentinya kebocoran yang berlangsung lebih pendek pada PWR standar Jepang. Selain itu jumlah pendingin primer yang bocor dan jumlah uap yang terlepas dari MSRV tercatat lebih besar daripada PWR Mihama unit 2. Karakter aliran kebocoran, fluktuasi tekanan primer, dan level pressurizer sedikit berbeda pada tahap-tahap awal kejadian, namun relatif sama pada tahap akhir ketika aliran kebocoran dapat dihentikan. Hasil simulasi juga menunjukkan perlunya tindakan operator secara manual yang ditunjukkan dari isolasi sistem air umpan bantu (AFW) pada pembangkit uap yang bocor, aktuasi katup pelepas uap (MSRV) pada pembangkit uap yang utuh dan aktuasi auxiliary spray dan power operated relief valve (PORV) pada pressurizer untuk mengantisipasi kejadian sebagai bagian dari prosedur operasi darurat.Kata kunci: SGTR, PWR Mihama Unit 2, PWR standar Jepang On February 9,1991, a Steam Generator Tube Rupture (SGTR) took place at the Mihama Unit No. 2. From that event, the accident sequence representing the actuation of protection system and engineered safety feature to mitigate the leak from primary system to secondary system is recorded. That sequence is then applied on the Japanese standard PWR to be simulated using RELAP5/SCDAP/Mod3.2 thermal-hydraulic code. The purpose is to compare consequences resulted if this accident is occurred on the Japanese standard PWR. Parameter compared are break mass flow, fluctuation of primary and secondary pressure, and fluctuation of pressurizer level. The simulation result shown that the difference in the time duration from the initiation of rupture up to the leak termination, which takes place in shorter duration on the standard Japanese PWR. It is also shown that the total amount of the primary coolant leaked through the break nozzle to the secondary system that calculated is bigger than on the Mihama unit 2. The character of break mass flow, fluctuation of the primary system and level of pressurizer is slightly different in the beginning of the event, but is in similar trend in the end of event as the break flow is terminated. The simulation result also shows the necessity of operator action to manually isolate the auxiliary feedwater system in the affected steam generator, to actuate the main steam relief valves in the intact steam generator, and to actuate the auxiliary spray and power operated relief valve on pressurizer to anticipate the event as part of the emergency operating procedures. Keywords: SGTR, Mihama Unit 2,standard Japanese PW

    RELAP5 SIMULATION FOR SEVERE ACCIDENT ANALYSIS OF RSG-GAS REACTOR

    Get PDF
    The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational chararacteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element. Keywords: loss of flow, blockage, fuel plate, RSG-GAS, RELAP5   SIMULASI RELAP5 UNTUK ANALISIS KECELAKAAN PARAH PADA REAKTOR RSG-GAS. Reaktor riset di dunia diketahui lebih aman dari pada reaktor daya karena desainnya yang lebih sederhana pada teras dan karakteristika operasinya. Namun demikian, potensi bahaya reaktor riset terhadap publik dan lingkungan tidak bisa diabaikan karena beberapa fitur tertentu. Oleh karena itu, level keselamatan reaktor riset harus jelas ditunjukkan dalam Laporan Analisis Keselamatan (LAK) dalam bentuk analisis keselamatan yang dilakukan dengan berbagai macam pendekatan dan metode dan didukung dengan alat komputasi. Tujuan penelitian ini adalah untuk mensimulasikan beberapa kecelakaan parah pada reaktor RSG-GAS yang dapat menyebabkan kerusakan bahan bakar untuk memperkuat hasil analisis kecelakaan parah yang sudah ada dalam LAK. Simulation dilakukan dengan program perhitungan RELAP5/SCDAP/Mod3.4 yang memiliki kemampuan untuk memodelkan elemen bahan bakar tipe pelat di RSG-GAS. Tiga kejadian telah disimulasikan yaitu hilangnya aliran primer dan sekunder dengan kegagalan reaktor untuk dipadamkan, tersumbatnya beberapa kanal pendingin bahan bakar pada daya penuh, dan hilangnya aliran primer dan sekunder yang diikuti dengan tersumbatnya beberapa kanal pendingin bahan bakar setelah reaktor padam. Kejadian pertama akan membahayakan pelat bahan bakar dengan naiknya temperatur kelongsong hingga titik lelehnya yaitu 590 °C. Tersumbatnya satu atau beberapa kanal pada satu elemen bahan bakar menyebabkan konsekuensi yang berbeda pada pelat bahan bakar, dimana paling sedikit tersumbatnya 2 kanal akan merusak satu pelat bahan bakar, apalagi tersumbatnya satu elemen bahan bakar. Kombinasi antara hilangnya aliran pendingin primer dan sekunder yang diikuti dengan tersumbatnya satu kanal bahan bakar setelah reaktor dipadamkan menyebabkan naiknya temperatur kelongsong di bawah titik lelehnya yang berarti sirkulasi alam yang terbentuk dan daya yang terus turun cukup untuk mendinginkan elemen bahan bakar. Kata kunci: kehilangan aliran, penyumbatan, pelat bahan bakar, RSG-GAS, RELAP

    ANALISIS KEJADIAN STEAM GENERATOR TUBE RUPTURE (SGTR) BERDASARKAN SKENARIO MIHAMA UNIT 2

    Get PDF
    Pada tanggal 9 Februari 1991, terjadi kecelakaan putusnya pipa pemanas pembangkit uap (Steam Generator Tube Rupture/SGTR) pada PLTN Mihama Unit 2. Dari kejadian tersebut, diperoleh catatan sekuensi kecelakaan berupa aktuasi sistem proteksi dan fitur keselamatan terekayasa dalam memitigasi kebocoran dari sistem primer ke sistem sekunder. Urutan sekuensi tersebut kemudian diterapkan pada PWR standar Jepang untuk disimulasikan menggunakan program perhitungan RELAP5/SCDAP/Mod3.2. Tujuannya untuk mengevaluasi konsekuensi yang terjadi bila kecelakaan tersebut terjadi pada PWR standar Jepang. Parameter yang dibandingkan adalah laju alir kebocoran, perubahan tekanan primer dan sekunder dan perubahan level di dalam pressurizer. Hasil simulasi menunjukkan perbedaan lama waktu kejadian SGTR hingga berhentinya kebocoran yang berlangsung lebih pendek pada PWR standar Jepang. Selain itu jumlah pendingin primer yang bocor dan jumlah uap yang terlepas dari MSRV tercatat lebih besar daripada PWR Mihama unit 2. Karakter aliran kebocoran, fluktuasi tekanan primer, dan level pressurizer sedikit berbeda pada tahap-tahap awal kejadian, namun relatif sama pada tahap akhir ketika aliran kebocoran dapat dihentikan. Hasil simulasi juga menunjukkan perlunya tindakan operator secara manual yang ditunjukkan dari isolasi sistem air umpan bantu (AFW) pada pembangkit uap yang bocor, aktuasi katup pelepas uap (MSRV) pada pembangkit uap yang utuh dan aktuasi auxiliary spray dan power operated relief valve (PORV) pada pressurizer untuk mengantisipasi kejadian sebagai bagian dari prosedur operasi darurat.Kata kunci: SGTR, PWR Mihama Unit 2, PWR standar Jepang On February 9,1991, a Steam Generator Tube Rupture (SGTR) took place at the Mihama Unit No. 2. From that event, the accident sequence representing the actuation of protection system and engineered safety feature to mitigate the leak from primary system to secondary system is recorded. That sequence is then applied on the Japanese standard PWR to be simulated using RELAP5/SCDAP/Mod3.2 thermal-hydraulic code. The purpose is to compare consequences resulted if this accident is occurred on the Japanese standard PWR. Parameter compared are break mass flow, fluctuation of primary and secondary pressure, and fluctuation of pressurizer level. The simulation result shown that the difference in the time duration from the initiation of rupture up to the leak termination, which takes place in shorter duration on the standard Japanese PWR. It is also shown that the total amount of the primary coolant leaked through the break nozzle to the secondary system that calculated is bigger than on the Mihama unit 2. The character of break mass flow, fluctuation of the primary system and level of pressurizer is slightly different in the beginning of the event, but is in similar trend in the end of event as the break flow is terminated. The simulation result also shows the necessity of operator action to manually isolate the auxiliary feedwater system in the affected steam generator, to actuate the main steam relief valves in the intact steam generator, and to actuate the auxiliary spray and power operated relief valve on pressurizer to anticipate the event as part of the emergency operating procedures. Keywords: SGTR, Mihama Unit 2,standard Japanese PW

    PEMODELAN SISTEM PENDINGINAN SUNGKUP SECARA PASIF MENGGUNAKAN RELAP5

    Get PDF
    Semua reaktor daya maju (Generasi III+) memanfaatkan sistem pasif untuk membuang panas melalui sirkulasi alam. Salah satu fitur unik dari reaktor daya maju tipe PWR AP1000 adalah adanya sistem pendinginan sungkup secara pasif (Passive Containment Cooling System / PCS) yang didesain menjaga tekanan sungkup di bawah desain selama 72 jam tanpa tindakan operator. Selama kecelakaan dasar desain seperti kecelakaan hilangnya pendingin atau kecelakaan putusnya jalur uap, terjadi lepasan uap yang bersentuhan dengan dinding baja bejana sungkup yang lebih dingin. Perpindahan kalor dari lepasan uap melalui konveksi dan konduksi dinding baja bejana sungkup akan mengakibatkan perubahan densitas udara akibat pemanasan yang memicu aliran sirkulasi alam dari udara yang akan naik ke atas. Makalah ini bertujuan untuk memperoleh model sungkup AP1000 untuk menunjukkan fungsi PCS menggunakan RELAP5. Fungsi dasar PCS yang ingin diperoleh adalah fenomena perpindahan panas dari uap ke dinding bejana sungkup dan ke udara luar untuk menghasilkan aliran konveksi alam udara. Metodologi yang digunakan adalah pengumpulan data desain, nodalisasi dengan RELAP5, dan simulasi fungsi sungkup berdasarkan masukan kecelakaan dasar desain tertentu. Hasil pemodelan sungkup telah dapat menunjukkan fenomena  perpindahan panas dari dalam sungkup ke udara luar dalam bentuk proses kondensasi dan konveksi alam. Hasil perhitungan RELAP5 terhadap model sungkup menunjukkan peningkatan tekanan sungkup yang melebihi tekanan desain sungkup sebesar 59 psig seperti dibandingkan dalam dokumen desain AP1000. Hal itu disebabkan belum dimodelkannya pendinginan sungkup melalui pembasahan tangki sungkup bagian luar dari tangki Passive Containment Cooling Storage Tank (PCCWST). Hasil pemodelan akan digunakan untuk analisis kecelakaan AP1000 secara menyeluruh yang melibatkan fungsi PCS.Kata kunci: pemodelan, sungkup, AP1000, pasif All advanced power reactors (Generation III+) utilize passive system to transfer heat by natural convection. One of the unique features of advanced power reactor of AP1000 is the presence of passive containment cooling system (PCS) designed to maintain containment pressure below its design pressure for 72 hours without operator intervention. During a design bases accident, such as loss of coolant accident or main steam line break, steam is released into the containment atmosphere and in contact with cooler steel containment vessel. Heat transfer from steam by convection of steam and conduction of steel wall will initiate air heating in the outside space of containment vessel and initiate natural convection of air from the bottom of air baffle due to the change in the air density. This paper is objected to get a containment model of AP1000 for showing the PCS function using RELAP5. Basic function to be focused is heat transfer phenomena from the steam to the wall containment and to the outside air to obtain natural convection of air. The methodology utilized are collecting design data, containment nodalization using RELAP5, and simulation of containment function based on certain design bases event condition. The results of simulation have shown the heat transfer phenomena from inside containment into the outside air by steam condensation and natural convection of the air. RELAP5 calculation of containment model shows an increase in containment pressure above the containment design pressure of 59 psig as compared in the AP1000 design document. That is because the recent RELAP5 modelling did not include the additional cooling of external surface of containment vessel from the the Passive Containment Cooling Water Storage Tank (PCCWST). The result of modeling will be used for further accident analyses of AP1000 involving the PCS function. Keywords: modeling, containment, AP1000, passiv

    PRELIMINARY ASSESSMENT OF ENGINEERED SAFETY FEATURES AGAINST STATION BLACKOUT IN SELECTED PWR MODELS

    Get PDF
    The 2011 Fukushima accident did not prevent countries to construct new nuclear power plants (NPPs) as part of the electricity generation system. Based on the IAEA database, there are a total of 44 units of PWR type NPPs whose constructions are started after 2011. To assess the technology of engineered safety features (ESFs) of the newly constructed PWRs, a study has been conducted as described in this paper, especially in facing the station blackout (SBO) event. It is expected from this study that there are a number of PWR models that can be considered to be constructed in Indonesia from the year of 2020. The scope of the study is PWRs with a limited capacity from 900 to 1100 MWe constructed and operated after 2011 and small-modular type of reactors (SMRs) with the status of at least under licensing. Based on the ESFs design assessment, the passive core decay heat removal has been applied in the most PWR models, which is typically using steam condensing inside heat exchanger within a water tank or by air cooling. From the selected PWR models, the CPR-1000, HPR-1000, AP-1000, and VVER-1000, 1200, 1300 series have the capability to remove the core decay heat passively. The most innovative passive RHR of AP-1000 and the longest passive RHR time period using air cooling in several VVER models are preferred. From the selected SMR designs, the NuScale design and RITM-200 possess more advantages compared to the ACP-100, CAREM-25, and SMART. NuScale represents the model with full-power natural circulation and RITM-200 with forced circulation. NuScale has the longest time period for passive RHR as claimed by the vendor, however the design is still under licensing process. The RITM-200 reactor has a combination of passive air and water-cooling of the heat exchanger and is already under construction. 

    PEMODELAN SISTEM PENDINGINAN SUNGKUP SECARA PASIF MENGGUNAKAN RELAP5

    Get PDF
    Semua reaktor daya maju (Generasi III+) memanfaatkan sistem pasif untuk membuang panas melalui sirkulasi alam. Salah satu fitur unik dari reaktor daya maju tipe PWR AP1000 adalah adanya sistem pendinginan sungkup secara pasif (Passive Containment Cooling System / PCS) yang didesain menjaga tekanan sungkup di bawah desain selama 72 jam tanpa tindakan operator. Selama kecelakaan dasar desain seperti kecelakaan hilangnya pendingin atau kecelakaan putusnya jalur uap, terjadi lepasan uap yang bersentuhan dengan dinding baja bejana sungkup yang lebih dingin. Perpindahan kalor dari lepasan uap melalui konveksi dan konduksi dinding baja bejana sungkup akan mengakibatkan perubahan densitas udara akibat pemanasan yang memicu aliran sirkulasi alam dari udara yang akan naik ke atas. Makalah ini bertujuan untuk memperoleh model sungkup AP1000 untuk menunjukkan fungsi PCS menggunakan RELAP5. Fungsi dasar PCS yang ingin diperoleh adalah fenomena perpindahan panas dari uap ke dinding bejana sungkup dan ke udara luar untuk menghasilkan aliran konveksi alam udara. Metodologi yang digunakan adalah pengumpulan data desain, nodalisasi dengan RELAP5, dan simulasi fungsi sungkup berdasarkan masukan kecelakaan dasar desain tertentu. Hasil pemodelan sungkup telah dapat menunjukkan fenomena  perpindahan panas dari dalam sungkup ke udara luar dalam bentuk proses kondensasi dan konveksi alam. Hasil perhitungan RELAP5 terhadap model sungkup menunjukkan peningkatan tekanan sungkup yang melebihi tekanan desain sungkup sebesar 59 psig seperti dibandingkan dalam dokumen desain AP1000. Hal itu disebabkan belum dimodelkannya pendinginan sungkup melalui pembasahan tangki sungkup bagian luar dari tangki Passive Containment Cooling Storage Tank (PCCWST). Hasil pemodelan akan digunakan untuk analisis kecelakaan AP1000 secara menyeluruh yang melibatkan fungsi PCS.Kata kunci: pemodelan, sungkup, AP1000, pasif All advanced power reactors (Generation III+) utilize passive system to transfer heat by natural convection. One of the unique features of advanced power reactor of AP1000 is the presence of passive containment cooling system (PCS) designed to maintain containment pressure below its design pressure for 72 hours without operator intervention. During a design bases accident, such as loss of coolant accident or main steam line break, steam is released into the containment atmosphere and in contact with cooler steel containment vessel. Heat transfer from steam by convection of steam and conduction of steel wall will initiate air heating in the outside space of containment vessel and initiate natural convection of air from the bottom of air baffle due to the change in the air density. This paper is objected to get a containment model of AP1000 for showing the PCS function using RELAP5. Basic function to be focused is heat transfer phenomena from the steam to the wall containment and to the outside air to obtain natural convection of air. The methodology utilized are collecting design data, containment nodalization using RELAP5, and simulation of containment function based on certain design bases event condition. The results of simulation have shown the heat transfer phenomena from inside containment into the outside air by steam condensation and natural convection of the air. RELAP5 calculation of containment model shows an increase in containment pressure above the containment design pressure of 59 psig as compared in the AP1000 design document. That is because the recent RELAP5 modelling did not include the additional cooling of external surface of containment vessel from the the Passive Containment Cooling Water Storage Tank (PCCWST). The result of modeling will be used for further accident analyses of AP1000 involving the PCS function. Keywords: modeling, containment, AP1000, passiv
    corecore