5 research outputs found

    Design and characterization of programmable DNA nanotubes

    Get PDF
    DNA self-assembly provides a programmable bottom-up approach for the synthesis of complex structures from nanoscale components. Although nanotubes are a fundamental form encountered in tile-based DNA self-assembly, the factors governing tube structure remain poorly understood. Here we report and characterize a new type of nanotube made from DNA double-crossover molecules (DAE-E tiles). Unmodified tubes range from 7 to 20 nm in diameter (4 to 10 tiles in circumference), grow as long as 50 μm with a persistence length of ~4 μm, and can be programmed to display a variety of patterns. A survey of modifications (1) confirms the importance of sticky-end stacking, (2) confirms the identity of the inside and outside faces of the tubes, and (3) identifies features of the tiles that profoundly affect the size and morphology of the tubes. Supported by these results, nanotube structure is explained by a simple model based on the geometry and energetics of B-form DNA

    Transport électrophorétique de l'ADN en solution de polymères neutres

    No full text
    STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Evidence that Collagen Fibrils in Tendons Are Inhomogeneously Structured in a Tubelike Manner

    Get PDF
    The standard model for the structure of collagen in tendon is an ascending hierarchy of bundling. Collagen triple helices bundle into microfibrils, microfibrils bundle into subfibrils, and subfibrils bundle into fibrils, the basic structural unit of tendon. This model, developed primarily on the basis of x-ray diffraction results, is necessarily vague about the cross-sectional organization of fibrils and has led to the widespread assumption of laterally homogeneous closepacking. This assumption is inconsistent with data presented here. Using atomic force microscopy and micromanipulation, we observe how collagen fibrils from tendons behave mechanically as tubes. We conclude that the collagen fibril is an inhomogeneous structure composed of a relatively hard shell and a softer, less dense core
    corecore