12 research outputs found
Tumor Cells Upregulate Normoxic HIF-1Â in Response to Doxorubicin
Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. While its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here we show that under normoxic conditions HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapy used to treat many cancers. Doxorubicin also enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of NO in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact
Tumor Cells Upregulate Normoxic HIF-1α in Response to Doxorubicin
Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. While its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here we show that under normoxic conditions HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapy used to treat many cancers. Doxorubicin also enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of NO in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact
Apelin-13 infusion salvages the peri-infarct region to preserve cardiac function after severe myocardial injury
BACKGROUND: Apelin-13 (A13) regulates cardiac homeostasis. However, the effects and mechanism of A13 infusion after an acute myocardial injury (AMI) have not been elucidated. This study assesses the restorative effects and mechanism of A13 on the peri-infarct region in murine AMI model. METHODS: 51 FVB/N mice (12 weeks, 30 g) underwent AMI. A week following injury, continuous micro-pump infusion of A13 (0.5 μg/g/day) and saline was initiated for 4-week duration. Dual contrast MRI was conducted on weeks 1, 2, 3, and 5, consisting of delayed-enhanced and manganese-enhanced MRI. Four mice in each group were followed for an extended period of 4 weeks without further infusion and underwent MRI scans on weeks 7 and 9. RESULTS: A13 infusion demonstrated preserved LVEF compared to saline from weeks 1 to 4 (21.9 ± 3.2% to 23.1 ± 1.7%* vs. 23.5 ± 1.7% to 16.9 ± 2.8%, *p = 0.02), which persisted up to 9 weeks post-MI (+1.4%* vs. −9.4%, *p = 0.03). Mechanistically, dual contrast MRI demonstrated significant decrease in the peri-infarct and scar % volume in A13 group from weeks 1 to 4 (15.1 to 7.4% and 34.3 to 25.1%, p = 0.02, respectively). This was corroborated by significant increase in 5-ethynyl-2′-deoxyuridine (EdU(+)) cells by A13 vs. saline groups in the peri-infarct region (16.5 ± 3.1% vs. 8.1 ± 1.6%; p = 0.04), suggesting active cell mitosis. Finally, significantly enhanced mobilization of CD34(+) cells in the peripheral blood and up-regulation of APJ, fibrotic, and apoptotic genes in the peri-infarct region were found. CONCLUSIONS: A13 preserves cardiac performance by salvaging the peri-infarct region and may contribute to permanent restoration of the severely injured myocardium
SSRBCs but not NLRBCs accumulate in tumor microvessels within 30 minutes after injection.
<p>Intravital microscopy of the vasculature of 8-day old 4T1 tumors implanted in the dorsal skin window chamber within 30 minutes after infusion of mice with SSRBCs (A, C, E) or NLRBCs (B,D,F) shows the accumulation of SSRBCs but not NLRBCs in the tumor blood vessels and tumor parenchyma (A,B,E,F). At the same time, SSRBC uptake is observed in the tumor vessels, there is minimal uptake in the adjacent subdermal blood vessels (C). There is also minimal uptake of NLRBCs in adjacent subdermal blood vessels (D) (Magnification 5×). Thirty minutes after infusion, the uptake of fluorescently-labeled SSRBCs (n = 5) or NLRBCs (n = 5) in tumor vessels (G) and tumor parenchyma (H) is quantitated in still video images (fluorescence intensity (FI) at Magnification 20×). SSRBCs (n = 6) show significantly greater mean FI in tumor vessels and parenchyma (G and H respectively) compared to subdermal skin vessels or NLRBCs (n = 3) (<i>p</i> = 0.00001 for FI of SSRBCs in tumor vessels and tumor parenchyma vs. respective controls in both G and H). Abbreviations in legend: <i>AS</i>: adjacent subdermal skin vessels.</p
Expression of adhesion molecules on 4T1 tumor vascular endothelium.
<p>Frozen sections of 4T1 tumors stained with antibodies against various adhesion molecules shows significant endothelial expression of PECAM-1 (A), ICAM-4 (B), laminin α5 (C). αv integrin (D). Secondary antibodies alone used as negative controls to stain the same tumor sections are shown in the inset of each panel. Magnification 40×.</p
SSRBCs but not NLRBCs combined with prooxidants ZnPP and ZnPP-D induce a tumoricidal response in 4T1 bearing mice.
<p>The fraction of mice with tumors <5× the pretreatment volumes versus time is shown (n = 10 for each treatment group). All three groups treated with SSRBCs combined with ZnPP or ZnPP-D show significant tumor growth delay compared to PBS controls. In the adjacent Table, a control experiment shows that tumor bearing animals receiving SSRBCs 1× or 3× alone, NLRBC 1× or 3× alone, NLRBCs 1× or 3× with ZnPP or ZnPP-D, ZnPP alone or Doxil + ZnPP exhibited no significant tumor growth delay versus the PBS control. * indicates that mice receiving SSRBC1× alone displayed significantly accelerated tumor growth compared to the PBS control.</p
SSRBCs accumulate to a significantly greater degree in tumors compared to NLRBCs.
<p>RFP-labeled SSRBCs (n = 4) or NLRBCs (n = 2) were injected into mice bearing eight day old 4T1 tumors. Twenty four hours later tumors and organs were collected and RFP fluorescence quantitated on sections of tumors and organs. The uptake of SSRBCs in tumors is significantly greater than NLRBCs (p = 0.0014) (A, B, D). In contrast, the uptake of SSRBCs and NLRBCs is not significantly different in the spleen, lungs and kidneys (p>0.05) (A) (Magnification 5×). H&E tumor sections from SSRBC-treated mouse show focal areas of cytoplasmic eosinophilia consistent with ischemia (E) not present in tumors treated with NLRBCs (C) (Magnification 20×). Abbreviations in legend: negTumor, negLung, negSpleen, negKidney mean mice injected with NLRBCs or SSRBCs without RFP label.</p
Schematic depiction of proposed pathophysiology of tumor killing induced by SSRBCs and the HO-1 inhibitor ZnPP.
<p>The hypoxic and acidic tumor milieu activates HIF1α, which, in turn, stimulates VEGF and HO-1 expression and the production of TNFα. TNFα upregulates several adhesion molecules on tumor endothelium, including several endothelial cognate adhesion ligands for the major adhesion receptors expressed on SSRBCs. Deformable non-sickled SS RBCs adhere to the activated endothelium of the tumor vasculature, along with leukocytes to form microaggregates leading to tumor vascular obstruction/occlusion. Entrapped SSRBCs release SS hemoglobin which is converted rapidly to methemoglobin and cleaved to liberate free heme. Hydrophobic and lipophilic heme and/or heme-nitrosyl complexes permeate tumor and endothelial cell membranes where they catalytically oxidize lipids, proteins and DNA causing cell death. In the presence of ZnPP, a competitive inhibitor of HO-1, intracellular heme and oxidative products such as reactive oxygen and nitrogen species (ROS and RNS) are free to exert their potent oxidative function leading to tumor and endothelial cell death.</p
Eight day old 4T1 carcinoma is vascularized and hypoxic.
<p>Intravital microscopy of two eight day old 4T1 tumors implanted in the dorsal skin window chamber viewed with light microscopy shows diffuse tumor microvascularity (panels A, C). Corresponding hyperspectral imaging of the same tumors exhibits hemoglobin saturations ≤10% over a 70% of the tumor surfaces (B,D). Magnification 5×.</p
Tumoricidal effect of the combination of hemin, H<sub>2</sub>O<sub>2</sub> and ZnPP in a clonogenic tumor survival model.
<p>Three agent regimens consisting of pre-treating 4T1 cells with i) hemin alone or combined with ZnPP for 2 hrs followed by the combination of ZnPP and H<sub>2</sub>O<sub>2</sub> for 2 hrs or, ii) ZnPP for 2 hours followed by the combination of hemin and H<sub>2</sub>O<sub>2</sub> for 2 hours induced significant tumor cell death compared to each agent individually (**p<0.0002) and any two of these agents used simultaneously (†<i>p</i><0.0001). Clonogenic survival is shown as a mean of three independent experiments with standard error (SE) indicated. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052543#pone.0052543.s005" target="_blank">Table S2</a> for protocol used in these studies.</p