452 research outputs found

    DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model

    Full text link
    In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.Comment: revised versio

    Vaccination and clinical severity: Is the effectiveness of contact tracing and case isolation hampered by past vaccination?

    Get PDF
    published_or_final_versio

    Phase Diagram of the tt--UU--V1V_1--V2V_2 Model at Quarter Filling

    Full text link
    We examine the ground-state properties of the one-dimensional Hubbard model at quarter filling with Coulomb interactions between nearest-neighbors V1V_1 and next-nearest neighbors V2V_2. Using the density-matrix renormalization group and exact diagonalization methods, we obtain an accurate ground-state phase diagram in the V1V_1-V2V_2 plane with three different phases: 2kF2k_{\rm F}- and 4kF4k_{\rm F}-charge-density-wave and a broad metallic phase in-between. The metal is a Tomonaga-Luttinger-liquid whose critical exponent KρK_{\rho} is largest around V1=2V2V_1=2V_2, where V1V_1 and V2V_2 are frustrated, and smallest, Kρ=0.25K_{\rho}=0.25, at the boundaries between the metallic phase and each of the two ordered phases.Comment: 4 pages, 5 figures, sumitted to PR

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure

    Local density of states of the one-dimensional spinless fermion model

    Full text link
    We investigate the local density of states of the one-dimensional half-filled spinless fermion model with nearest-neighbor hopping t>0 and interaction V in its Luttinger liquid phase -2t < V <= 2t. The bulk density of states and the local density of states in open chains are calculated over the full band width 4t with an energy resolution <= 0.08t using the dynamical density-matrix renormalization group (DDMRG) method. We also perform DDMRG simulations with a resolution of 0.01t around the Fermi energy to reveal the power-law behaviour predicted by the Luttinger liquid theory for bulk and boundary density of states. The exponents are determined using a finite-size scaling analysis of DDMRG data for lattices with up to 3200 sites. The results agree with the exact exponents given by the Luttinger liquid theory combined with the Bethe Ansatz solution. The crossover from boundary to bulk density of states is analyzed. We have found that boundary effects can be seen in the local density of states at all energies even far away from the chain edges

    A Green's function decoupling scheme for the Edwards fermion-boson model

    Full text link
    Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular exact diagonalization and density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n=0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained by DMRG and dynamical DMRG and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.Comment: 19 pages, 7 figures, final version with updated reference

    Phase separation in the Edwards model

    Full text link
    The nature of charge transport within a correlated background medium can be described by spinless fermions coupled to bosons in the model introduced by Edwards. Combining numerical density matrix renormalization group and analytical projector-based renormalization methods we explore the ground-state phase diagram of the Edwards model in one dimension. Below a critical boson frequency any long-range order disappears and the system becomes metallic. If the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger liquid is attractive and finally makes room for a phase separated state, just as in the t-J model. The phase boundary separating repulsive from the attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge correlations, whereas fermion segregation is indicated by a vanishing inverse compressibility. On approaching phase separation the photoemission spectra develop strong anomalies.Comment: 6 pages, 5 figures, final versio
    corecore