19 research outputs found

    ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration.

    Full text link
    PurposeDespite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility.ResultsIn situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer.ConclusionHence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering

    Hypothesis: A challenge of overexpression Zfp521 in neural tendency of derived dental pulp stem cells

    Get PDF
    Neurodegenerative diseases have now become a major challenge, especially in aged societies. Most of the traditional strategies used for treatment of these diseases are untargeted and have little efficiency. Developments in stem cell investigations have given much attention to cell therapy as an alternative concept in the regeneration of neural tissues. Dental pulp stem cells (DPSCs) can be readily obtained by noninvasive procedures and have been shown to possess properties similar to well-known mesenchymal stem cells. Furthermore, based on their neural crest origin, DPSCs are considered to have a good potential to differentiate into neural cells. Zfp521 is a transcription factor that regulates expression of many genes, including ones involved in the neural differentiation process. There for based on neural crest origin of the cell and high expression of neural progenitor markers, we speculate that sole overexpression of Zfp521 protein can facilitate differentiation of dental stem cells to neural cells and researchers may find these cells suitable for therapeutic treatment of neurodegenerative disease

    3D Printing of Inertial Microfluidic Devices.

    Full text link
    Inertial microfluidics has been broadly investigated, resulting in the development of various applications, mainly for particle or cell separation. Lateral migrations of these particles within a microchannel strictly depend on the channel design and its cross-section. Nonetheless, the fabrication of these microchannels is a continuous challenging issue for the microfluidic community, where the most studied channel cross-sections are limited to only rectangular and more recently trapezoidal microchannels. As a result, a huge amount of potential remains intact for other geometries with cross-sections difficult to fabricate with standard microfabrication techniques. In this study, by leveraging on benefits of additive manufacturing, we have proposed a new method for the fabrication of inertial microfluidic devices. In our proposed workflow, parts are first printed via a high-resolution DLP/SLA 3D printer and then bonded to a transparent PMMA sheet using a double-coated pressure-sensitive adhesive tape. Using this method, we have fabricated and tested a plethora of existing inertial microfluidic devices, whether in a single or multiplexed manner, such as straight, spiral, serpentine, curvilinear, and contraction-expansion arrays. Our characterizations using both particles and cells revealed that the produced chips could withstand a pressure up to 150 psi with minimum interference of the tape to the total functionality of the device and viability of cells. As a showcase of the versatility of our method, we have proposed a new spiral microchannel with right-angled triangular cross-section which is technically impossible to fabricate using the standard lithography. We are of the opinion that the method proposed in this study will open the door for more complex geometries with the bespoke passive internal flow. Furthermore, the proposed fabrication workflow can be adopted at the production level, enabling large-scale manufacturing of inertial microfluidic devices

    Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells

    Get PDF
    The release of ions that can significantly contribute toward cellular response is an important characteristic of bioactive glasses (BG). Here, ionic extracts of three different compositions of BG powders in 60 mol% SiO2, x mol% CaO (x = 28, 32 and 36), x mol% P2O5 (x = 12, 8 and 4) compositional system were utilized to study their effect on the viability, differentiation and mineralization of dental pulp stem cells (DPSCs) in vitro. ICP was applied to detect the exact ionic concentrations released from different composition of BG. DPSCs treated with conditioned media from the glass with 4 mol% P2O5 (BGCM1, media containing 44.01 ± 0.6 mg/L Si, 61.72 ± 0.1 mg/L Ca and 7.57 ± 0.01 mg/L P) were more metabolically active compared to conditioned media from the glass with 8 mol% P2O5 (BGCM2, media with 47.36 ± 0.7 mg/L Si, 57.4 ± 0.1 mg/L Ca and 14.54 ± 0.2 mg/L P), at all times tested, but in all cases the process was slower than the control. Cells exposed to media conditioned by the glass with 12 mol% P2O5 (BGCM3, 40.46 ± 0.5 mg/L Si, 61. 85 ± 0.3 mg/L Ca and 28.43 ± 0.3 mg/L P) responded differently, such that cells showed to be more metabolically active than control at day 3, but then similar to or lower than control at higher time points. Differentiation of DPSCs toward osteogenic lineage in the presence of BGCM was assessed by Alizarin red staining. Cells treated with high phosphate BGCM3 displayed a higher density of red mineralized nodules than cells treated with BGCM1 and BGCM2 after 21 days of culture in non-osteogenic medium. BGCM3 was therefore chosen for gene expression studies. Osteogenic differentiation of DPSCs in the presence and/or absence of BGCM3 or osteogenic supplements were studied by RT-PCR. Overall, the results demonstrated that, in the absence of osteogenic supplements, BGCM3 group showed a significantly higher mRNA expression levels for alkaline phosphatase at day 7, osteopontin and osteonectin at days 7 and 14, and a high level of collagen I at day 14, compared to negative control group (BM−). Overall, the results obtained from BGCM3 group are beneficial for the design and manufacture of scaffolds or particulates with tailored ion release for a range of bone repair applications

    Recent advances in polymeric nanostructured ion selective membranes for biomedical applications.

    Full text link
    Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications

    Mechanobiology of Dental Pulp Stem Cells at the Interface of Aqueous-Based Fabricated ZIF8 Thin Film

    Full text link
    The limited knowledge on how biological systems sense and respond to the mechanical properties of metal-organic framework (MOF) thin films is a critical restriction factor for their extensive usage. To bridge this gap, we performed an in vitro study for defining and linking surface characteristics at the interface of the zeolitic imidazolate framework-8 (ZIF8) thin layer to stem cell behavior. First, the physio-mechanical properties of the ZIF8 layer grown on polydopamine (PDA) and tannic acid (TA) layers have been studied. The response of dental pulp stem cells (DPSCs) to different surface states was examined. The results showed that the uniform crystalline microstructure of the ZIF8 on PDA and TA effectively led to the 61- and 388-fold increased surface roughness, 3- and 2.5-fold moderated elastic modulus, almost 3-fold elevated surface free energy, and highly charged surfaces (ζ = -60 mV for TA/ZIF8), respectively. Beyond the inherent bioactivity of the ZIF8 layer, these substrate cues promoted advanced cell adhesion (∼two times) and high proliferation rate. Furthermore, we found a substantial increment in the differentiation efficiency of DPSCs on the ZIF8 layer, in a way that the expression of functional adipocyte (PPARG) and osteoblast (SPP1) markers was, respectively, elevated around 30 »000- and 10 »000-fold on the TA/ZIF8-coated silicon wafer (SW). Our findings support the impact of fabrication strategy on the biointerface properties of the ZIF8 layer and bring SW/TA/ZIF8 as a robust platform for managing stem cells for biomedical applications

    Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating.

    Full text link
    Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts

    Design and applications of MEMS flow sensors: A review

    Get PDF
    © 2019 Elsevier B.V. There is an indispensable need for fluid flow rate and direction sensors in various medical, industrial and environmental applications. Besides the critical demands on sensing range of flow parameters (such as rate, velocity, direction and temperature), the properties of different target gases or liquids to be sensed pose challenges to the development of reliable, inexpensive and low powered sensors. This paper presents an overview of the work done on design and development of Microelectromechanical system (MEMS)-based flow sensors in recent years. In spite of using some similar principles, diverse production methods, analysis strategies, and different sensing materials, MEMS flow sensors can be broadly categorized into three main types, namely thermal sensors, piezoresistive sensors and piezoelectric sensors. Additionally, some key challenges and future prospects for the use of the MEMS flow sensors are discussed briefly

    Pumpless deterministic lateral displacement separation using a paper capillary wick

    No full text
    Deterministic lateral displacement (DLD) is a passive separation method that separates particles by hydrodynamic size. This label-free method is a promising technique for cell separation because of its high size resolution and insensitivity to flow rate. Development of capillary-driven microfluidic technologies allows microfluidic devices to be operated without any external power for fluid pumping, lowering their total cost and complexity. Herein, we develop and test a DLD-based particle and cell sorting method that is driven entirely by capillary pressure. We show microchip self-filling, flow focusing, flow stability, and capture of separated particles. We achieve separation efficiency of 92% for particle-particle separation and more than 99% efficiency for cell-particle separation. The high performance of driven flow and separation along with simplicity of the operation and setup make it a valuable candidate for point-of-care devices
    corecore