282 research outputs found
Characteristics of stress-induced defects under positive bias in high-k/InGaAs stacks
The introduction of InGaAs as a channel material for complementary metal-oxide-semiconductor technology presents major challenges in terms of the characterization of the various defects that affect the performance and reliability. Understanding the generation of defects by constant voltage stresses is crucial in terms of their concentration profiles and energy levels. In particular, we want to understand the real nature of the defects responsible for the dispersion of C-V in strong accumulation. Here, we show that the degradation under positive bias of metal/Al2O3/n-InGaAs capacitors reveals two contributions depending on the temperature that affects the C-V curves in a different way. Based on features of stressed C-V curves, it is possible to estimate the onset point of the distribution of border traps near the midgap condition. The results suggest that these defects are strongly related to the characteristics of the InGaAs substrate.Fil: Palumbo, Félix Roberto Mario. Technion - Israel Institute of Technology; Israel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Winter, R.. Technion - Israel Institute of Technology; IsraelFil: Krylov, I.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Characteristics of the dynamics of breakdown filaments in Al2O3/InGaAs stacks
In this paper, the Al2O3/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shekhter, P.. Technion - Israel Institute of Technology; IsraelFil: Cohen Weinfeld, K.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Titania/alumina bilayer gate insulators for InGaAs metal-oxide-semiconductor devices
We describe the electrical properties of atomic layer deposited TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> bilayer gate oxides which simultaneously achieve high gate capacitance density and low gate leakage current density. Crystallization of the initially amorphous TiO<sub>2</sub> film contributes to a significant accumulation capacitance increase (∼33%) observed after a forming gas anneal at 400 °C. The bilayer dielectrics reduce gate leakage current density by approximately one order of magnitude at flatband compared to Al<sub>2</sub>O<sub>3</sub> single layer of comparable capacitance equivalent thickness. The conduction band offset of TiO<sub>2</sub> relative to InGaAs is 0.6 eV, contributing to the ability of the stacked dielectric to suppress gate leakage conduction
Investigation of stress induced interface states in Al2O3/InGaAs metal-oxide-semiconductor capacitors
Implementation of high-k dielectrics on InGaAs for CMOS technology requires capabilities to predict long-time degradation and the impact of process changes on degradation processes. In this work, the degradation under constant voltage stress of metal gate/Al2O3/InGaAs stacks is studied for n-type and p-type As2 passivated InGaAs substrates. The results show that the degradation for both positive bias and negative bias did not produce Al2O3 oxide traps, while the distribution of interface states increased. In particular, the distribution of interface states, calculated by the distributed impedance equivalent circuit model, increased significantly after positive bias stress regardless of the doping type of the substrate. The injection of carriers from the semiconductor conduction band into the gate dielectric enhanced the generation of interface states but not the generation of oxide traps, suggesting that the interfacial degradation is related primarily to the InGaAs surface and not to the oxide layer.Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnologica Nacional; ArgentinaFil: Winter, R.. Technion - Israel Institute of Technology; IsraelFil: Tang, K.. University Of Stanford; Estados UnidosFil: McIntyre, P. C.. University Of Stanford; Estados UnidosFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Calibrating Climate Models Using Inverse Methods: Case studies with HadAM3, HadAM3P and HadCM3
Optimisation methods were successfully used to calibrate parameters in an atmospheric component of a climate model using two variants of the Gauss-Newton line-search algorithm. 1) A standard Gauss-Newton algorithm in which, in each iteration, all parameters were perturbed. 2) A randomized block-coordinate variant in which, in each iteration, a random sub-set of parameters was perturbed. The cost function to be minimized used multiple large-scale, multi-annual average observations and was constrained to produce net radiative fluxes close to those observed. These algorithms were used to calibrate the HadAM3 (3rd Hadley Centre Atmospheric Model) model at N48 resolution and the HadAM3P model at N96 resolution.
For the HadAM3 model, cases with seven and fourteen parameters were tried. All ten 7-parameter cases using HadAM3 converged to cost function values similar to that of the standard configuration. For the 14-parameter cases several failed to converge, with the random variant in which 6 parameters were perturbed being most successful. Multiple sets of parameter values were found that produced multiple models very similar to the standard configuration. HadAM3 cases that converged were coupled to an ocean model and ran for 20 years starting from a pre-industrial HadCM3 (3rd Hadley Centre Coupled model) state resulting in several models whose global-average temperatures were consistent with pre-industrial estimates. For the 7-parameter cases the Gauss-Newton algorithm converged in about 70 evaluations. For the 14-parameter algorithm with 6 parameters being randomly perturbed about 80 evaluations were needed for convergence. However, when 8 parameters were randomly perturbed algorithm performance was poor. Our results suggest the computational cost for the Gauss-Newton algorithm scales between P and P2 where P is the number of parameters being calibrated.
For the HadAM3P model three algorithms were tested. Algorithms in which seven parameters were perturbed and three out of seven parameters randomly perturbed produced final configurations comparable to the standard hand tuned configuration. An algorithm in which six out of thirteen parameters were randomly perturbed failed to converge.
These results suggest that automatic parameter calibration using atmosphericmodels is feasible and that the resulting coupled models are stable. Thus, automatic calibration could replace human driven trial and error. However, convergence and costs are, likely, sensitive to details of the algorithm.</p
Effect of forming gas annealing on the degradation properties of Ge-based MOS stacks
The influence of forming gas annealing on the degradation at a constant stress voltage of multi-layered germanium-based Metal-Oxide-Semiconductor capacitors (p-Ge/GeOx/Al2O3/High-K/Metal Gate) has been analyzed in terms of the C-V hysteresis and flat band voltage as a function of both negative and positive stress fields. Significant differences were found for the case of negative voltage stress between the annealed and non-annealed samples, independently of the stressing time. It was found that the hole trapping effect decreases in the case of the forming gas annealed samples, indicating strong passivation of defects with energies close to the valence band existing in the oxide-semiconductor interface during the forming gas annealing. Finally, a comparison between the degradation dynamics of Germanium and III-V (n-InGaAs) MOS stacks is presented to summarize the main challenges in the integration of reliable Ge–III-V hybrid devices.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Fadida, S.. Technion - Israel Institute of Technology; IsraelFil: Winter, R.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories
In this paper we study the kinetics of diffusion-limited, pseudo-first-order
A + B -> B reactions in situations in which the particles' intrinsic
reactivities vary randomly in time. That is, we suppose that the particles are
bearing "gates" which interchange randomly and independently of each other
between two states - an active state, when the reaction may take place, and a
blocked state, when the reaction is completly inhibited. We consider four
different models, such that the A particle can be either mobile or immobile,
gated or ungated, as well as ungated or gated B particles can be fixed at
random positions or move randomly. All models are formulated on a
-dimensional regular lattice and we suppose that the mobile species perform
independent, homogeneous, discrete-time lattice random walks. The model
involving a single, immobile, ungated target A and a concentration of mobile,
gated B particles is solved exactly. For the remaining three models we
determine exactly, in form of rigorous lower and upper bounds, the large-N
asymptotical behavior of the A particle survival probability. We also realize
that for all four models studied here such a probalibity can be interpreted as
the moment generating function of some functionals of random walk trajectories,
such as, e.g., the number of self-intersections, the number of sites visited
exactly a given number of times, "residence time" on a random array of lattice
sites and etc. Our results thus apply to the asymptotical behavior of the
corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR
Site‐specific weed management—constraints and opportunities for the weed research community: Insights from a workshop
The adoption of site‐specific weed management (SSWM) technologies by farmers is not aligned with the scientific achievements in this field. While scientists have demonstrated significant success in real‐time weed identification, phenotyping and accurate weed mapping by using various sensors and platforms, the integration by farmers of SSWM and weed phenotyping tools into weed management protocols is limited. This gap was therefore a central topic of discussion at the most recent workshop of the SSWM Working Group arranged by the European Weed Research Society (EWRS). This insight paper aims to summarise the presentations and discussions of some of the workshop panels and to highlight different aspects of weed identification and spray application that were thought to hinder SSWM adoption. It also aims to share views and thoughts regarding steps that can be taken to facilitate future implementation of SSWM
Superextendons with a modified measure
For superstrings, the consequences of replacing the measure of integration
in the Polyakov's action by where is
a density built out of degrees of freedom independent of the metric
defined in the string are studied. As in Siegel reformulation of
the Green Schwarz formalism the Wess-Zumino term is the square of
supersymmetric currents. As opposed to the Siegel case, the compensating fields
needed for this do not enter into the action just as in a total derivative.
They instead play a crucial role to make up a consistent dynamics. The string
tension appears as an integration constant of the equations of motion. The
generalization to higher dimensional extended objects is also studied using in
this case the Bergshoeff and Sezgin formalism with the associated additional
fields, which again are dynamically relevant unlike the standard formulation.
Also unlike the standard formulation, there is no need of a cosmological term
on the world brane.Comment: typos corrected, references adde
- …