15 research outputs found

    Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality

    No full text
    Two different biosolids were obtained composting anaerobic (A) and aerobic (B) municipal sewage sludge (SS) with rice husk. Higher amounts of SS (1:1 v/v) could be used in this composting process than in conventional ones. The two biosolids were characterized by chemical analysis and compared with a conventional green manure plus municipal solid waste and municipal SS compost. The effect of these products on soil functionality was studied in a 14- week incubation experiment by their addition to two different soils (silty clay—Ustic Endoaquert—and sandy loam—Aquic Xeropsamment). The total organic C ranged from 20 to 26 % and total N from 1.6 to 2.5 % in the two biosolids. The most relevant difference was due to dissolved organic C that was lower in the anaerobic biosolid (1 mgCkg−1) than in the other products (5–6 mgCkg−1). The total trace elements (Cd, Cr, Cu, Ni, Pb and Zn) contents were under the limits fixed by the European legislation for soil application of SS (EC Directive 86/278/EEC, 1986). The three biosolids did not show strong negative effects on soil functionality during the incubation experiment, although some significant differences were found. The aerobic biosolid B mainly increased cumulative N release, microbial activity, basal respiration rate, microbial biomass-C-tototal organic C ratio, β-glucosidase, alkaline phosphomonoesterase and aryl-sulphatase activities. The anaerobic one (B) decreased basal respiration rate, microbial biomass-C-to-total organic C ratio and aryl-sulphatase activity. DTPA soil bioavailable heavy metals were not affected by biosolids additions
    corecore