14 research outputs found
Effective Monotherapy with Amrubicin for a Refractory Extrapulmonary Small-Cell Carcinoma of the Liver
Small-cell carcinoma of the liver is a rare neoplasm, and no standard treatment for it has yet been established. A 72-year-old man with an extensive disease stage of small-cell carcinoma of the liver was treated with systemic chemotherapy consisting of cisplatin and etoposide (PE) followed by irinotecan. Although the masses were markedly decreased once after the sixth course of PE, amrubicin monotherapy as third-line chemotherapy was started because the hepatic masses had increased again. The administration of amrubicin was repeated in 8 courses with regression of the disease, resulting in a 26-month survival since the first-line chemotherapy was started. This is the first case report of a refractory EPSCC successfully treated with amrubicin
Relationship between the severity of pre-frailty and the degree of adaptation of Ninjin’yoeito (NYT) on pre-frailty
With the global trend towards longer life expectancies, there’s an increasing emphasis on not just living longer, but also maintaining health and wellbeing into older age. This study explores the efficacy of Ninjin’yoeito (NYT) in the early stages of frailty, a critical period for preventive interventions. Taking account of the knowledge gap regarding the association between early frailty and NYT, we use data from workplace health checkups to examine the relationship between pre-frailty severity and NYT adaption. The objective of our research is to enhance the comprehension of early treatments using NYT to prevent the progression of frailty. A total of 314 employees of the Kyoto Industrial Health Association who received workplace health checkups between November 2021 and March 2023 and consented to this study were included in the analysis. Information on gender, age, body mass index (BMI), NYT-specific symptoms assessment, the Japanese version of the General Health Questionnaire-12 (GHQ-12), and the Kihon Checklist (KCL) were obtained. The correlation analysis revealed that there was a strong positive correlation between the number of applicable NYT indications and the GHQ-12 score (r = 0.5992, p < 0.0001). Similarly, a moderate positive correlation was observed between the number of applicable NYT indications and the KCL score (r = 0.5030, p < 0.0001). In the multivariate analysis, both GHQ-12 (β = 0.49, SE = 0.06, t = 7.66, 95% CI: 0.36 to 0.62, p = 0.000) and KCL (β = 0.54, SE = 0.12, t = 4.29, 95% CI: 0.29 to 0.79, p = 0.000) showed significant positive associations with the variance in the number of applicable NYT indications, indicating that higher scores on these measures were related to a greater number of indications. NYT has the potential to be utilized not only as a therapeutic intervention for frailty, but also as a preventive measure
Review Article : Feudalism or Absolute Monarchism?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68809/2/10.1177_009770049001600304.pd
AGC2 (Citrin) Deficiency—From Recognition of the Disease till Construction of Therapeutic Procedures
Can you imagine a disease in which intake of an excess amount of sugars or carbohydrates causes hyperammonemia? It is hard to imagine the intake causing hyperammonemia. AGC2 or citrin deficiency shows their symptoms following sugar/carbohydrates intake excess and this disease is now known as a pan-ethnic disease. AGC2 (aspartate glutamate carrier 2) or citrin is a mitochondrial transporter which transports aspartate (Asp) from mitochondria to cytosol in exchange with glutamate (Glu) and H+. Asp is originally supplied from mitochondria to cytosol where it is necessary for synthesis of proteins, nucleotides, and urea. In cytosol, Asp can be synthesized from oxaloacetate and Glu by cytosolic Asp aminotransferase, but oxaloacetate formation is limited by the amount of NAD+. This means an increase in NADH causes suppression of Asp formation in the cytosol. Metabolism of carbohydrates and other substances which produce cytosolic NADH such as alcohol and glycerol suppress oxaloacetate formation. It is forced under citrin deficiency since citrin is a member of malate/Asp shuttle. In this review, we will describe history of identification of the SLC25A13 gene as the causative gene for adult-onset type II citrullinemia (CTLN2), a type of citrin deficiency, pathophysiology of citrin deficiency together with animal models and possible treatments for citrin deficiency newly developing
Recommended from our members
Objective interictal electrophysiology biomarkers optimize prediction of epilepsy surgery outcome.
Researchers have looked for rapidly- and objectively-measurable electrophysiology biomarkers that accurately localize the epileptogenic zone. Promising candidates include interictal high-frequency oscillation and phase-amplitude coupling. Investigators have independently created the toolboxes that compute the high-frequency oscillation rate and the severity of phase-amplitude coupling. This study of 135 patients determined what toolboxes and analytic approaches would optimally classify patients achieving post-operative seizure control. Four different detector toolboxes computed the rate of high-frequency oscillation at ≥80 Hz at intracranial EEG channels. Another toolbox calculated the modulation index reflecting the strength of phase-amplitude coupling between high-frequency oscillation and slow-wave at 3-4 Hz. We defined the completeness of resection of interictally-abnormal regions as the subtraction of high-frequency oscillation rate (or modulation index) averaged across all preserved sites from that averaged across all resected sites. We computed the outcome classification accuracy of the logistic regression-based standard model considering clinical, ictal intracranial EEG and neuroimaging variables alone. We then determined how well the incorporation of high-frequency oscillation/modulation index would improve the standard model mentioned above. To assess the anatomical variability across non-epileptic sites, we generated the normative atlas of detector-specific high-frequency oscillation and modulation index. Each atlas allowed us to compute the statistical deviation of high-frequency oscillation/modulation index from the non-epileptic mean. We determined whether the model accuracy would be improved by incorporating absolute or normalized high-frequency oscillation/modulation index as a biomarker assessing interictally-abnormal regions. We finally determined whether the model accuracy would be improved by selectively incorporating high-frequency oscillation verified to have high-frequency oscillatory components unattributable to a high-pass filtering effect. Ninety-five patients achieved successful seizure control, defined as International League against Epilepsy class 1 outcome. Multivariate logistic regression analysis demonstrated that complete resection of interictally-abnormal regions additively increased the chance of success. The model accuracy was further improved by incorporating z-score normalized high-frequency oscillation/modulation index or selective incorporation of verified high-frequency oscillation. The standard model had a classification accuracy of 0.75. Incorporation of normalized high-frequency oscillation/modulation index or verified high-frequency oscillation improved the classification accuracy up to 0.82. These outcome prediction models survived the cross-validation process and demonstrated an agreement between the model-based likelihood of success and the observed success on an individual basis. Interictal high-frequency oscillation and modulation index had a comparably additive utility in epilepsy presurgical evaluation. Our empirical data support the theoretical notion that the prediction of post-operative seizure outcomes can be optimized with the consideration of both interictal and ictal abnormalities
Scalp EEG interictal high frequency oscillations as an objective biomarker of infantile spasms
ObjectiveTo investigate the diagnostic utility of high frequency oscillations (HFOs) via scalp electroencephalogram (EEG) in infantile spasms.MethodsWe retrospectively analyzed interictal slow-wave sleep EEGs sampled at 2,000 Hz recorded from 30 consecutive patients who were suspected of having infantile spasms. We measured the rate of HFOs (80-500 Hz) and the strength of the cross-frequency coupling between HFOs and slow-wave activity (SWA) at 3-4 Hz and 0.5-1 Hz as quantified with modulation indices (MIs).ResultsTwenty-three patients (77%) exhibited active spasms during the overnight EEG recording. Although the HFOs were detected in all children, increased HFO rate and MIs correlated with the presence of active spasms (p < 0.001 by HFO rate; p < 0.01 by MIs at 3-4 Hz; p = 0.02 by MIs at 0.5-1 Hz). The presence of active spasms was predicted by the logistic regression models incorporating HFO-related metrics (AUC: 0.80-0.98) better than that incorporating hypsarrhythmia (AUC: 0.61). The predictive performance of the best model remained favorable (87.5% accuracy) after a cross-validation procedure.ConclusionsIncreased rate of HFOs and coupling between HFOs and SWA are associated with active epileptic spasms.SignificanceScalp-recorded HFOs may serve as an objective EEG biomarker for active epileptic spasms
INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity
Central nervous system (CNS) relapse accompanying the prolonged administration of imatinib mesylate has recently become apparent as an impediment to the therapy of Philadelphia chromosome-positive (Ph+) leukemia. CNS relapse may be explained by limited penetration of imatinib mesylate into the cerebrospinal fluid because of the presence of P-glycoprotein at the blood-brain barrier. To overcome imatinib mesylate-resistance mechanisms such as bcr-abl amplification, mutations within the ABL kinase domain, and activation of Lyn, we developed a dual BCR-ABL/Lyn inhibitor, INNO-406 (formerly NS-187), which is 25 to 55 times more potent than imatinib mesylate in vitro and at least 10 times more potent in vivo. The aim of this study was to investigate the efficacy of INNO-406 in treating CNS Ph+ leukemia. We found that INNO-406, like imatinib mesylate, is a substrate for P-glycoprotein. The concentrations of INNO-406 in the CNS were about 10% of those in the plasma. However, this residual concentration was enough to inhibit the growth of Ph+ leukemic cells which expressed not only wild-type but also mutated BCR-ABL in the murine CNS. Furthermore, cyclosporine A, a P-glycoprotein inhibitor, augmented the in vivo activity of INNO-406 against CNS Ph+ leukemia. These findings indicate that INNO-406 is a promising agent for the treatment of CNS Ph+ leukemia