4,834 research outputs found

    Metastable Resistance Anisotropy Orientation of Two-Dimensional Electrons in High Landau Levels

    Get PDF
    In half-filled high Landau levels, two-dimensional electron systems possess collective phases which exhibit a strongly anisotropic resistivity tensor. A weak, but as yet unknown, rotational symmetry-breaking potential native to the host semiconductor structure is necessary to orient these phases in macroscopic samples. Making use of the known external symmetry-breaking effect of an in-plane magnetic field, we find that the native potential can have two orthogonal local minima. It is possible to initialize the system in the higher minimum and then observe its relaxation toward equilibrium.Comment: 5 pages, 3 figures. Figure references corrected. Version accepted for publication in Physical Review Letter

    Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems

    Get PDF
    In a bilayer system consisting of a composite-fermion Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite bias voltage VmaxV_{\rm max}. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of VmaxV_{\rm max}. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of VmaxV_{\rm max} with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin polarized composite fermion Fermi sea to a partially spin polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [Eisenstein et al., Phys. Rev. B 94, 125409 (2016)]. For fractional quantum Hall states, we predict a substantial discontinuous jump in VmaxV_{\rm max} when the system undergoes a transition from a fully spin polarized state to a spin singlet or a partially spin polarized state.Comment: 14 pages, 14 figure

    Quantum Hall Exciton Condensation at Full Spin Polarization

    Get PDF
    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at nu=1 as a function of Zeeman energy, E_Z. The critical layer separation d/l for exciton condensation initially increases rapidly with E_Z, but then reaches a maximum and begins a gentle decline. At high E_Z, where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small E_Z and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.Comment: 4 pages, 3 eps figure

    Quantum Hall Exciton Condensation at Full Spin Polarization

    Get PDF
    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at ν_T = 1 as a function of Zeeman energy E_Z. The critical layer separation (d/ℓ)_c for exciton condensation initially increases rapidly with E_Z, but then reaches a maximum and begins a gentle decline. At high E_Z, where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ, is much larger than at small E_Z and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids

    Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions

    Get PDF
    We investigate tunneling in metal-insulator-metal junctions employing few atomic layers of hexagonal boron nitride (hBN) as the insulating barrier. While the low-bias tunnel resistance increases nearly exponentially with barrier thickness, subtle features are seen in the current-voltage curves, indicating marked influence of the intrinsic defects present in the hBN insulator on the tunneling transport. In particular, single electron charging events are observed, which are more evident in thicker-barrier devices where direct tunneling is substantially low. Furthermore, we find that annealing the devices modifies the defect states and hence the tunneling signatures.Comment: 5 pages, 5 figure

    Exciton Transport and Andreev Reflection in a Bilayer Quantum Hall System

    Get PDF
    We demonstrate that counterflowing electrical currents can move through the bulk of the excitonic quantized Hall phase found in bilayer two-dimensional electron systems (2DES) even as charged excitations cannot. These counterflowing currents are transported by neutral excitons which are emitted and absorbed at the inner and outer boundaries of an annular 2DES via Andreev reflection

    Independently contacted two-dimensional electron systems in double quantum wells

    Get PDF
    A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Ã… GaAs quantum wells separated by a 175 Ã… AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible

    Field-induced resonant tunneling between parallel two-dimensional electron systems

    Get PDF
    Resonant tunneling between two high-mobility two-dimensional (2D) electron systems in a double quantum well structure has been induced by the action of an external Schottky gate field. Using one 2D electron gas as source and the other as drain, the tunnel conductance between them shows a strong resonance when the gate field aligns the ground subband edges of the two quantum wells

    Multiquantum well structure with an average electron mobility of 4.0×10^6 cm^2/V s

    Get PDF
    We report a modulation-doped multiquantum well structure which suppresses the usual ambient light effect associated with modulation doping. Ten GaAs quantum wells 300-Å wide are symmetrically modulation doped using Si δ doping at the center of 3600-Å-wide Al0.1Ga0.9As barriers. The low field mobility of each well is 4.0×10^6 cm/V s at a density of 6.4×10^10 cm^−2 measured at 0.3 K either in the dark, or during, or after, exposure to light. This mobility is an order of magnitude improvement over previous work on multiwells
    • …
    corecore