5,901 research outputs found

    The detection and photometric redshift determination of distant galaxies using SIRTF's Infrared Array Camera

    Get PDF
    We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z ~ 3)galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.Comment: 28 pages incl 12 figures; to appear in June 1999 PASP. Fig.12 replaced with corrected versio

    The Porcupine Survey: A Distributed Survey and WISE Followup

    Get PDF
    Spitzer post-cryogen observations to perform a moderate depth survey distributed around the sky are proposed. Field centers are chosen to be WISE brown dwarf candidates, which will typically be 160 µJy at 4.7 µm and randomly distributed around the sky. The Spitzer observations will give much higher sensitivity, higher angular resolution, and a time baseline to measure both proper motions and possibly parallaxes. The distance and velocity data obtained on the WISE brown dwarf candidates will greatly improve our knowledge of the mass and age distribution of brown dwarfs. The outer parts of the Spitzer fields surrounding the WISE positions will provide a deep survey in many narrow fields of view distributed around the sky, and the volume of this survey will contain many more distant brown dwarfs, and many extragalactic objects

    Mid-infrared Variability from the Spitzer Deep Wide-field Survey

    Get PDF
    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg^2 of the NOAO Deep Wide Field Survey Boötes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r > 0.8) and that their joint variance (σ_(12)) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBoötes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S _0 ≃ 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities

    Controlling Effect of Geometrically Defined Local Structural Changes on Chaotic Hamiltonian Systems

    Full text link
    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a new and minimal method for achieving control of a chaotic system

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses

    Galaxy Cluster Correlation Function to z ~ 1.5 in the IRAC Shallow Cluster Survey

    Full text link
    We present the galaxy cluster autocorrelation function of 277 galaxy cluster candidates with 0.25 \le z \le 1.5 in a 7 deg^2 area of the IRAC Shallow Cluster Survey. We find strong clustering throughout our galaxy cluster sample, as expected for these massive structures. Specifically, at = 0.5 we find a correlation length of r_0 = 17.40^{+3.98}_{-3.10} h^-1 Mpc, in excellent agreement with the Las Campanas Distant Cluster Survey, the only other non-local measurement. At higher redshift, = 1, we find that strong clustering persists, with a correlation length of r_0=19.14^{+5.65}_{-4.56} h^-1 Mpc. A comparison with high resolution cosmological simulations indicates these are clusters with halo masses of \sim 10^{14} Msun, a result supported by estimates of dynamical mass for a subset of the sample. In a stable clustering picture, these clusters will evolve into massive (10^{15} Msun) clusters by the present day.Comment: 4 pages, 4 figures, 1 table. ApJ Letters, in pres

    A catalog of mid-infrared sources in the Extended Groth Strip

    Full text link
    The Extended Groth Strip (EGS) is one of the premier fields for extragalactic deep surveys. Deep observations of the EGS with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope cover an area of 0.38 square degrees to a 50% completeness limit of 1.5 uJy at 3.6 um. The catalog comprises 57434 objects detected at 3.6 um, with 84%, 28%, and 24% also detected at 4.5, 5.8, and 8.0 um. Number counts are consistent with results from other Spitzer surveys. Color distributions show that the EGS IRAC sources comprise a mixture of populations: low-redshift star-forming galaxies, quiescent galaxies dominated by stellar emission at a range of redshifts, and high redshift galaxies and AGN.Comment: ApJS in press, 35 pages including 13 figures. Catalog and images electronically available at http://www.cfa.harvard.edu/irac/eg

    Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features

    Get PDF
    Spectra have been obtained with the low-resolution modules of the Infrared Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources having fν_{\nu}(24 micron) > 0.75 mJy. Sources were chosen from a survey of 8.2 deg2^{2} within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS) using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope. Most sources are optically very faint (I > 24mag). Redshifts have previously been determined for 34 sources, based primarily on the presence of a deep 9.7 micron silicate absorption feature, with a median z of 2.2. Spectra are presented for the remaining 24 sources for which we were previously unable to determine a confident redshift because the IRS spectra show no strong features. Optical photometry from the NDWFS and infrared photometry with MIPS and the Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K photometry from the Keck I telescope for some objects. The sources without strong spectral features have overall spectral energy distributions (SEDs) and distributions among optical and infrared fluxes which are similar to those for the sources with strong absorption features. Nine of the 24 sources are found to have feasible redshift determinations based on fits of a weak silicate absorption feature. Results confirm that the "1 mJy" population of 24 micron Spitzer sources which are optically faint is dominated by dusty sources with spectroscopic indicators of an obscured AGN rather than a starburst. There remain 14 of the 58 sources observed in Bootes for which no redshift could be estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap

    Resist, comply or workaround? An examination of different facets of user engagement with information systems

    Get PDF
    This paper provides a summary of studies of user resistance to Information Technology (IT) and identifies workaround activity as an understudied and distinct, but related, phenomenon. Previous categorizations of resistance have largely failed to address the relationships between the motivations for divergences from procedure and the associated workaround activity. This paper develops a composite model of resistance/workaround derived from two case study sites. We find four key antecedent conditions derived from both positive and negative resistance rationales and identify associations and links to various resultant workaround behaviours and provide supporting Chains of Evidence from two case studies
    corecore