10 research outputs found

    Towards non-classical light storage via atomic-vapor Raman scattering

    Get PDF
    We present experimental work that investigates whether quantum information carried by light can be stored via reversible mapping of the quantum state of such light onto a collective atomic coherence. Such a quantum memory could be utilized to allow quantum communication over long, lossy channels. Current efforts concentrate on writing a photon-number-squeezed state of light onto a collective coherence between the ground-state hyperfine levels of 87Rb atoms in a warm vapor cell, and subsequent on-demand retrieval of this light. In this approach, intensity squeezing between the written and retrieved photon fields provides evidence for storage of a photon-number-squeezed state of light. The scheme is based on spontaneous Raman transitions that create the atomic coherence, and at the same time convert control fields into signal fields that propagate under conditions of electromagnetically induced transparency. We present experimental results demonstrating the storage and retrieval of light using this method, and discuss techniques for measuring intensity squeezing between these photon fields

    Towards non-classical light storage via atomic-vapor Raman scattering

    Get PDF

    Toward Manipulating Quantum Information with Atomic Ensembles

    Get PDF

    Toward Manipulating Quantum Information with Atomic Ensembles

    Get PDF

    Coherent Control of Stationary Light Pulses

    Full text link
    We present a detailed analysis of the recently demonstrated technique to generate quasi-stationary pulses of light [M. Bajcsy {\it et al.}, Nature (London) \textbf{426}, 638 (2003)] based on electromagnetically induced transparency. We show that the use of counter-propagating control fields to retrieve a light pulse, previously stored in a collective atomic Raman excitation, leads to quasi-stationary light field that undergoes a slow diffusive spread. The underlying physics of this process is identified as pulse matching of probe and control fields. We then show that spatially modulated control-field amplitudes allow us to coherently manipulate and compress the spatial shape of the stationary light pulse. These techniques can provide valuable tools for quantum nonlinear optics and quantum information processing.Comment: 27 pages, 10 figure

    Generation of a wave packet tailored to efficient free space excitation of a single atom

    Full text link
    We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wave and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirror's aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.

    Entanglement generation and transfer between remote atomic qubits interacting with squeezed field

    Full text link
    A pair of two level atoms A1A2, prepared either in a separable state or in an entangled state, interacts with a single mode of two mode squeezed cavity field while a third atomic qubit B interacts with the second mode of the squeezed field in a remote cavity. We analyze, numerically, the generation, sudden death and revival of three qubit entanglement as a function of initial entanglement of qubits A1A2 and degree of squeezing of electromagnetic field. Global negativity of partially transposed state operator is used to quantify the entanglement of three atom state. It is found that the initial entanglement of two mode field as well as that of the pair A1A2, both, contribute to three atom entanglement. A maximally entangled single excitation Bell pair in first cavity and two mode field with squeeze parameter s=0.64 are the initial conditions that optimize the peak value of three qubit mixed state entanglement. A smaller value of s=0.4 under similar conditions is found to generate a three qubit mixed state with comparable entanglement dynamics free from entanglement sudden death.Comment: 14 pages, 7 figures, sections III and IV merged with section II and analytic expressions moved to Appendices A and B. Figures improved and corrected typo

    Toward Manipulating Quantum Information with Atomic Ensembles

    Get PDF
    We review several ideas for manipulation of quantum information using atomic ensembles and photons and describe some preliminary experiments toward their implementation. In particular, we review a technique that allows for robust transfer of quantum states between light fields and metastable states of matter. Next we discuss the use of Raman scattering to produce robust entanglement of atomic ensembles via realistic (i.e., absorbing) channels. Finally, we present preliminary experimental results related to the implementation of entanglement via Raman scattering. Specifically, we present experimental studies of the intensity fluctuations in resonantly enhanced Raman scattering from a warm 85Rb vapor cell under conditions of EIT. A crossover between the Bose-Einstein and Poisson statistics of Raman light is observed and it is shown that the noise properties of Raman fields can be mirrored in transmitted pump beams.
    corecore