19 research outputs found

    Myocardium Metabolism in Physiological and Pathophysiological States: Implications of Epicardial Adipose Tissue and Potential Therapeutic Targets

    Get PDF
    The main energy substrate of adult cardiomyocytes for their contractility are the fatty acids. Its metabolism generates high ATP levels at the expense of high oxygen consumption in the mitochondria. Under low oxygen supply, they can get energy from other substrates, mainly glucose, lactate, ketone bodies, etc., but the mitochondrial dysfunction, in pathological conditions, reduces the oxidative metabolism. In consequence, fatty acids are stored into epicardial fat and its accumulation provokes inflammation, insulin resistance, and oxidative stress, which enhance the myocardium dysfunction. Some therapies focused on improvement the fatty acids entry into mitochondria have failed to demonstrate benefits on cardiovascular disorders. Oppositely, those therapies with effects on epicardial fat volume and inflammation might improve the oxidative metabolism of myocardium and might reduce the cardiovascular disease progression. This review aims at explain (a) the energy substrate adaptation of myocardium in physiological conditions, (b) the reduction of oxidative metabolism in pathological conditions and consequences on epicardial fat accumulation and insulin resistance, and (c) the reduction of cardiovascular outcomes after regulation by some therapies

    Receptor for advanced glycation end-products expression in subcutaneous adipose tissue is related to coronary artery disease

    Get PDF
    OBJECTIVE: Obesity, a risk factor for coronary artery disease (CAD), is associated with inflammation and reactive oxygen species (ROS) production, while advanced glycation end-products, through their receptor (AGER or RAGE), play an important role on these processes. The aim of this study was to analyze the expression levels of RAGE, NADPH oxidase subunits, and catalase in adipose tissue in relation with CAD. DESIGN AND METHODS: Patients undergoing heart surgery were included in two groups: with and without CAD. Epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) biopsies were analyzed for gene expression by RT-quantitative PCR, immunohistochemistry, or western blot. RESULTS: RAGE mRNA and protein expression in SAT from patients with CAD was lower than in patients without CAD. However, there was no change in EAT from patients with or without CAD. P22-PHOX and RAGE gene expression were higher in EAT than in SAT, whereas catalase mRNA levels were lower. NADPH oxidase subunits and catalase mRNA expression were not influenced by CAD. Whereas NADPH oxidase-dependent oxidative response of SAT and EAT to lipid circulating levels could be different; glycemic levels were not related with the analyzed genes expression. CONCLUSIONS: This study demonstrates that RAGE expression in SAT, but not in EAT, is down-regulated in patients with CAD with respect to those without CAD. Although changes were not observed for NADPH oxidase subunits or catalase expression between CAD and non-CAD patients, a possible relationship between ROS production and RAGE expression in adipose tissues cannot be ruled out

    CD5L, Macrophage Apoptosis Inhibitor, Was Identified in Epicardial Fat-Secretome and Regulated by Isoproterenol From Patients With Heart Failure

    Get PDF
    Objectives: Neurohormonal dysfunction, which can regulate epicardial fat activity, is one of the main promoters of atrial fibrillation (AF) in patients with heart failure (HF). Our aim was to study the epicardial fat mediators for AF in patients with HF and its catecholaminergic regulation. Methods: We have included 29 patients with HF who underwent cardiac surgery and were followed up for 5 years. Released proteins by epicardial adipose tissue (EAT) after isoproterenol treatment were identified by nano-high-performance liquid chromatography (HPLC) and triple time-of-flight (TOF) analysis. Common and differential identified proteins in groups of patients with AF before and after surgery were determined by the FunRich tool. Plasma and epicardial fat biopsy proteins were quantified by western blot. Results: Our results identified 17 common released proteins by EAT, after isoproterenol treatment, from HF patients who suffered AF or developed new-onset AF during follow-up. Mostly, they were involved on inflammatory response and extracellular matrix. One of them was CD5L, a macrophage apoptosis inhibitor. Its secretion by isoproterenol treatment was validated on western blot. The CD5L levels on epicardial fat were also higher in the group of male patients who present or develop AF (0.44 +/- 0.05 vs. 0.18 +/- 0.15; p < 0.016). However, there were no differences regarding plasma levels. Conclusion: Our results suggest the role of epicardial fat CD5L as a mediator of AF and its possible paracrine effect by catecholaminergic activity
    corecore