4 research outputs found

    Binary Black Hole Waveform Extraction at Null Infinity

    Full text link
    In this work, we present a work in progress towards an efficient and economical computational module which interfaces between Cauchy and characteristic evolution codes. Our goal is to provide a standardized waveform extraction tool for the numerical relativity community which will allow CCE to be readily applied to a generic Cauchy code. The tool provides a means of unambiguous comparison between the waveforms generated by evolution codes based upon different formulations of the Einstein equations and different numerical approximation.Comment: 11 pages, 7 figure

    Mergers of Supermassive Black Holes in Astrophysical Environments

    Get PDF
    Modeling the late inspiral and merger of supermassive black holes is central to understanding accretion processes and the conditions under which electromagnetic emission accompanies gravitational waves. We use fully general relativistic, hydrodynamics simulations to investigate how electromagnetic signatures correlate with black hole spins, mass ratios, and the gaseous environment in this final phase of binary evolution. In all scenarios, we find some form of characteristic electromagnetic variability whose pattern depends on the spins and binary mass ratios. Binaries in hot accretion flows exhibit a flare followed by a sudden drop in luminosity associated with the plunge and merger, as well as quasi-periodic oscillations correlated with the gravitational waves during the inspiral. Conversely, circumbinary disk systems are characterized by a low luminosity of variable emission, suggesting challenging prospects for their detection.Comment: 9 pages, 5 figures, 1 table, replaced with version accepted for publication in Ap
    corecore