4,980 research outputs found
Doubly Special Relativity with a minimum speed and the Uncertainty Principle
The present work aims to search for an implementation of a new symmetry in
the space-time by introducing the idea of an invariant minimum speed scale
(). Such a lowest limit , being unattainable by the particles, represents
a fundamental and preferred reference frame connected to a universal background
field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new
principle of symmetry in the space-time at the subatomic level for very low
energies close to the background frame (), providing a fundamental
understanding for the uncertainty principle, i.e., the uncertainty relations
should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in:
http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv
admin note: substantial text overlap with arXiv:physics/0702095,
arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120
On the interaction of a single-photon wave packet with an excited atom
The interaction of a single-photon wave packet with an initially excited
two-level atom in free space is studied in semiclassical and quantum
approaches. It is shown that the final state of the field does not contain
doubly occupied modes. The process of the atom's transition to the ground state
may be accelerated, decelerated or even reversed by the incoming photon,
depending on parameters. The spectrum of emitted radiation is close to the sum
of the spectrum of the incoming single-photon wave packet and the natural line
shape, with small and complicated deviations.Comment: 17 pages, 5 figure
On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity
The quantum field theoretic prediction for the vacuum energy density leads to
a value for the effective cosmological constant that is incorrect by between 60
to 120 orders of magnitude. We review an old proposal of replacing Einstein's
Field Equations by their trace-free part (the Trace-Free Einstein Equations),
together with an independent assumption of energy--momentum conservation by
matter fields. While this does not solve the fundamental issue of why the
cosmological constant has the value that is observed cosmologically, it is
indeed a viable theory that resolves the problem of the discrepancy between the
vacuum energy density and the observed value of the cosmological constant.
However, one has to check that, as well as preserving the standard cosmological
equations, this does not destroy other predictions, such as the junction
conditions that underlie the use of standard stellar models. We confirm that no
problems arise here: hence, the Trace-Free Einstein Equations are indeed viable
for cosmological and astrophysical applications.Comment: Substantial changes from v1 including added author, change of title
and emphasis of the paper although all original results of v1. remai
Gravitation, electromagnetism and the cosmological constant in purely affine gravity
The Eddington Lagrangian in the purely affine formulation of general
relativity generates the Einstein equations with the cosmological constant. The
Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, which
has the form of the Maxwell Lagrangian with the metric tensor replaced by the
symmetrized Ricci tensor, is dynamically equivalent to the Einstein-Maxwell
Lagrangian in the metric formulation. We show that the sum of the two affine
Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians
in the metric-affine/metric formulation. We also show that such a construction
is valid only for weak electromagnetic fields. Therefore the purely affine
formulation that combines gravitation, electromagnetism and the cosmological
constant cannot be a simple sum of terms corresponding to separate fields.
Consequently, this formulation of electromagnetism seems to be unphysical,
unlike the purely metric and metric-affine pictures, unless the electromagnetic
field couples to the cosmological constant.Comment: 14 pages, extended and combined with gr-qc/0701176; published versio
Einstein's fluctuation formula. A historical overview
A historical overview is given on the basic results which appeared by the
year 1926 concerning Einstein's fluctuation formula of black-body radiation, in
the context of light-quanta and wave-particle duality. On the basis of the
original publications (from Planck's derivation of the black-body spectrum and
Einstein's introduction of the photons up to the results of Born, Heisenberg
and Jordan on the quantization of a continuum) a comparative study is presented
on the first line of thoughts that led to the concept of quanta. The nature of
the particle-like fluctuations and the wave-like fluctuations are analysed by
using several approaches. With the help of the classical probability theory, it
is shown that the infinite divisibility of the Bose distribution leads to the
new concept of classical poissonian photo-multiplets or to the binary
photo-multiplets of fermionic character. As an application, Einstein's
fluctuation formula is derived as a sum of fermion type fluctuations of the
binary photo-multiplets.Comment: 34 page
Quantum Mechanical Carrier of the Imprints of Gravitation
We exhibit a purely quantum mechanical carrier of the imprints of gravitation
by identifying for a relativistic system a property which (i) is independent of
its mass and (ii) expresses the Poincare invariance of spacetime in the absence
of gravitation. This carrier consists of the phase and amplitude correlations
of waves in oppositely accelerating frames. These correlations are expressed as
a Klein-Gordon-equation-determined vector field whose components are the
``Planckian power'' and the ``r.m.s. thermal fluctuation'' spectra. The
imprints themselves are deviations away from this vector field.Comment: 8 pages, RevTex. Html version of this and related papers on
accelerated frames available at http://www.math.ohio-state.edu/~gerlac
Post-Newtonian Approximation in Maxwell-Like Form
The equations of the linearized first post-Newtonian approximation to general
relativity are often written in "gravitoelectromagnetic" Maxwell-like form,
since that facilitates physical intuition. Damour, Soffel and Xu (DSX) (as a
side issue in their complex but elegant papers on relativistic celestial
mechanics) have expressed the first post-Newtonian approximation, including all
nonlinearities, in Maxwell-like form. This paper summarizes that DSX
Maxwell-like formalism (which is not easily extracted from their celestial
mechanics papers), and then extends it to include the post-Newtonian
(Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e.
gravitational stress tensor) and law of momentum conservation in Maxwell-like
form. The authors and their colleagues have found these Maxwell-like momentum
tools useful for developing physical intuition into numerical-relativity
simulations of compact binaries with spin.Comment: v4: Revised for resubmission to Phys Rev D, 6 pages. v3: Reformulated
in terms of DSX papers. Submitted to Phys Rev D, 6 pages. v2: Added
references. Changed definitions & convention
Gravity-Yang-Mills-Higgs unification by enlarging the gauge group
We revisit an old idea that gravity can be unified with Yang-Mills theory by
enlarging the gauge group of gravity formulated as gauge theory. Our starting
point is an action that describes a generally covariant gauge theory for a
group G. The Minkowski background breaks the gauge group by selecting in it a
preferred gravitational SU(2) subgroup. We expand the action around this
background and find the spectrum of linearized theory to consist of the usual
gravitons plus Yang-Mills fields charged under the centralizer of the SU(2) in
G. In addition, there is a set of Higgs fields that are charged both under the
gravitational and Yang-Mills subgroups. These fields are generically massive
and interact with both gravity and Yang-Mills sector in the standard way. The
arising interaction of the Yang-Mills sector with gravity is also standard.
Parameters such as the Yang-Mills coupling constant and Higgs mass arise from
the potential function defining the theory. Both are realistic in the sense
explained in the paper.Comment: 61 pages, no figures (v2) some typos correcte
Mass as a Relativistic Quantum Observable
A field state containing photons propagating in different directions has a
non vanishing mass which is a quantum observable. We interpret the shift of
this mass under transformations to accelerated frames as defining space-time
observables canonically conjugated to energy-momentum observables. Shifts of
quantum observables differ from the predictions of classical relativity theory
in the presence of a non vanishing spin. In particular, quantum redshift of
energy-momentum is affected by spin. Shifts of position and energy-momentum
observables however obey simple universal rules derived from invariance of
canonical commutators.Comment: 5 pages, revised versio
Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation
It is shown that the energy of a mode of a classical chaotic field, following
the continuous exponential distribution as a classical random variable, can be
uniquely decomposed into a sum of its fractional part and of its integer part.
The integer part is a discrete random variable (we call it Planck variable)
whose distribution is just the Bose distribution yielding the Planck law of
black-body radiation. The fractional part is the dark part (we call is dark
variable) with a continuous distribution, which is, of course, not observed in
the experiments. It is proved that the Bose distribution is infinitely
divisible, and the irreducible decomposition of it is given. The Planck
variable can be decomposed into an infinite sum of independent binary random
variables representing the binary photons (more accurately photo-molecules or
photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons
follow the Fermi statistics. Consequently, the black-body radiation can be
viewed as a mixture of statistically and thermodynamically independent fermion
gases consisting of binary photons. The binary photons give a natural tool for
the dyadic expansion of arbitrary (but not coherent) ordinary photon
excitations. It is shown that the binary photons have wave-particle
fluctuations of fermions. These fluctuations combine to give the wave-particle
fluctuations of the original bosonic photons expressed by the Einstein
fluctuation formula.Comment: 29 page
- âŠ