942 research outputs found

    de Sitter Vacua, Renormalization and Locality

    Get PDF
    We analyze the renormalization properties of quantum field theories in de Sitter space and show that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. One is the Euclidean vacuum, and the other can be viewed as an analytic continuation of Euclidean functional integrals on RPdRP^d. The corresponding Lorentzian manifold is the future half of global de Sitter space with boundary conditions on fields at the origin of time. We argue that the perturbation series in this case has divergences at the origin, which render the future evolution of the system indeterminate without a better understanding of high energy physics.Comment: JHEP Latex, 13 pages, v2. references adde

    Abelian Gauge Theory in de Sitter Space

    Full text link
    Quantization of spinor and vector free fields in 4-dimensional de Sitter space-time, in the ambient space notation, has been studied in the previous works. Various two-points functions for the above fields are presented in this paper. The interaction between the spinor field and the vector field is then studied by the abelian gauge theory. The U(1) gauge invariant spinor field equation is obtained in a coordinate independent way notation and their corresponding conserved currents are computed. The solution of the field equation is obtained by use of the perturbation method in terms of the Green's function. The null curvature limit is discussed in the final stage.Comment: 10 pages, typos corrected, reference adde

    Supergrassmannian and large N limit of quantum field theory with bosons and fermions

    Get PDF
    We study a large N_{c} limit of a two-dimensional Yang-Mills theory coupled to bosons and fermions in the fundamental representation. Extending an approach due to Rajeev we show that the limiting theory can be described as a classical Hamiltonian system whose phase space is an infinite-dimensional supergrassmannian. The linear approximation to the equations of motion and the constraint yields the 't Hooft equations for the mesonic spectrum. Two other approximation schemes to the exact equations are discussed.Comment: 24 pages, Latex; v.3 appendix added, typos corrected, to appear in JM

    On the lattice approach to the maximum Higgs boson mass

    Full text link
    If the triviality upper bound on the Higgs boson mass mH occurs for strong self-coupling, inferring properties of the Higgs from the euclidean propagator is in principle theoretically difficult whether in coordinate or momentum space. In that case, common methods of identifying mH in lattice field theory simulations may produce a value for which is at best distantly related to the true upper limit. We discuss some shortcomings and ambiguities of recent results suggesting that the maximum occurs for weak coupling and emphasize potential complications due to finite-size and non-Lorentz-invariant effects of the lattice. The situation is illustrated by reference to the behavior in an analytically soluble approximation based on a 1/N expansion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27139/1/0000132.pd

    Squeezed States in the de Sitter Vacuum

    Full text link
    We discuss the treatment of squeezed states as excitations in the Euclidean vacuum of de Sitter space. A comparison with the treatment of these states as candidate no-particle states, or alpha-vacua, shows important differences already in the free theory. At the interacting level alpha-vacua are inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed, matrix elements can be renormalized in the excited states using precisely the standard local counterterms of the Euclidean vacuum. Implications for inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change

    Monopole Percolation in the Compact Abelian Higgs Model

    Full text link
    We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that contains compact U(1) gauge fields coupled to unitary norm Higgs fields. We have determined the location of the percolation transition line in the plane (βg,βH)(\beta_g, \beta_H). This line overlaps the confined-Coulomb and the confined-Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the end-point where this phase transition line stops. In addition, we have determined the critical exponents of the monopole percolation transition away from the phase transition lines. We have performed the finite size scaling in terms of the monopole density instead of the coupling, because the density seems to be the natural parameter when dealing with percolation phenomena.Comment: 13 pages. REVTeX. 16 figs. included using eps

    On Thermalization in de Sitter Space

    Full text link
    We discuss thermalization in de Sitter space and argue, from two different points of view, that the typical time needed for thermalization is of order R3/lpl2R^{3}/l_{pl}^{2}, where RR is the radius of the de Sitter space in question. This time scale gives plenty of room for non-thermal deviations to survive during long periods of inflation. We also speculate in more general terms on the meaning of the time scale for finite quantum systems inside isolated boxes, and comment on the relation to the Poincar\'{e} recurrence time.Comment: 14 pages, 2 figures, latex, references added. Improved discussion in section 3 adde

    Heavy Mesons in Two Dimensions

    Full text link
    The large mass limit of QCD uncovers symmetries that are not present in the QCD lagrangian. These symmetries have been applied to physical (finite mass) systems, such as B and D mesons. We explore the validity of this approximation in the 't Hooft model (two-dimensional QCD in the large-N approximation). We find that the large mass approximation is good, even at the charm mass, for form factors, but it breaks down for the pseudoscalar decay constant.Comment: 4 pages, 3 figures inc

    De Sitter Waves and the Zero Curvature Limit

    Full text link
    We show that a particular set of global modes for the massive de Sitter scalar field (the de Sitter waves) allows to manage the group representations and the Fourier transform in the flat (Minkowskian) limit. This is in opposition to the usual acceptance based on a previous result, suggesting the appearance of negative energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, has to be preferred as far as one wishes to recover ordinary QFT in the flat limit.Comment: 9 pages, latex no figure, to appear in Phys. Rev.

    Nonet Symmetry and Two-Body Decays of Charmed Mesons

    Full text link
    The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is studied in the context of nonet symmetry. We have found that it is badly broken in the PP channels and in the P sector of the PV channels as expected from the non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also found that nonet symmetry does not describe the data well. We have found that this discrepancy cannot be attributed entirely to SU(3) breaking at the usual level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be very badly broken. The possibility of resolving the problem in the future is also discussed.Comment: 9 pages, UTAPHY-HEP-
    corecore