942 research outputs found
de Sitter Vacua, Renormalization and Locality
We analyze the renormalization properties of quantum field theories in de
Sitter space and show that only two of the maximally invariant vacuum states of
free fields lead to consistent perturbation expansions. One is the Euclidean
vacuum, and the other can be viewed as an analytic continuation of Euclidean
functional integrals on . The corresponding Lorentzian manifold is the
future half of global de Sitter space with boundary conditions on fields at the
origin of time. We argue that the perturbation series in this case has
divergences at the origin, which render the future evolution of the system
indeterminate without a better understanding of high energy physics.Comment: JHEP Latex, 13 pages, v2. references adde
Abelian Gauge Theory in de Sitter Space
Quantization of spinor and vector free fields in 4-dimensional de Sitter
space-time, in the ambient space notation, has been studied in the previous
works. Various two-points functions for the above fields are presented in this
paper. The interaction between the spinor field and the vector field is then
studied by the abelian gauge theory. The U(1) gauge invariant spinor field
equation is obtained in a coordinate independent way notation and their
corresponding conserved currents are computed. The solution of the field
equation is obtained by use of the perturbation method in terms of the Green's
function. The null curvature limit is discussed in the final stage.Comment: 10 pages, typos corrected, reference adde
Supergrassmannian and large N limit of quantum field theory with bosons and fermions
We study a large N_{c} limit of a two-dimensional Yang-Mills theory coupled
to bosons and fermions in the fundamental representation. Extending an approach
due to Rajeev we show that the limiting theory can be described as a classical
Hamiltonian system whose phase space is an infinite-dimensional
supergrassmannian. The linear approximation to the equations of motion and the
constraint yields the 't Hooft equations for the mesonic spectrum. Two other
approximation schemes to the exact equations are discussed.Comment: 24 pages, Latex; v.3 appendix added, typos corrected, to appear in
JM
On the lattice approach to the maximum Higgs boson mass
If the triviality upper bound on the Higgs boson mass mH occurs for strong self-coupling, inferring properties of the Higgs from the euclidean propagator is in principle theoretically difficult whether in coordinate or momentum space. In that case, common methods of identifying mH in lattice field theory simulations may produce a value for which is at best distantly related to the true upper limit. We discuss some shortcomings and ambiguities of recent results suggesting that the maximum occurs for weak coupling and emphasize potential complications due to finite-size and non-Lorentz-invariant effects of the lattice. The situation is illustrated by reference to the behavior in an analytically soluble approximation based on a 1/N expansion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27139/1/0000132.pd
Squeezed States in the de Sitter Vacuum
We discuss the treatment of squeezed states as excitations in the Euclidean
vacuum of de Sitter space. A comparison with the treatment of these states as
candidate no-particle states, or alpha-vacua, shows important differences
already in the free theory. At the interacting level alpha-vacua are
inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed,
matrix elements can be renormalized in the excited states using precisely the
standard local counterterms of the Euclidean vacuum. Implications for
inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change
Monopole Percolation in the Compact Abelian Higgs Model
We have studied the monopole-percolation phenomenon in the four dimensional
Abelian theory that contains compact U(1) gauge fields coupled to unitary norm
Higgs fields. We have determined the location of the percolation transition
line in the plane . This line overlaps the confined-Coulomb
and the confined-Higgs phase transition lines, originated by a
monopole-condensation mechanism, but continues away from the end-point where
this phase transition line stops. In addition, we have determined the critical
exponents of the monopole percolation transition away from the phase transition
lines. We have performed the finite size scaling in terms of the monopole
density instead of the coupling, because the density seems to be the natural
parameter when dealing with percolation phenomena.Comment: 13 pages. REVTeX. 16 figs. included using eps
On Thermalization in de Sitter Space
We discuss thermalization in de Sitter space and argue, from two different
points of view, that the typical time needed for thermalization is of order
, where is the radius of the de Sitter space in question.
This time scale gives plenty of room for non-thermal deviations to survive
during long periods of inflation. We also speculate in more general terms on
the meaning of the time scale for finite quantum systems inside isolated boxes,
and comment on the relation to the Poincar\'{e} recurrence time.Comment: 14 pages, 2 figures, latex, references added. Improved discussion in
section 3 adde
Heavy Mesons in Two Dimensions
The large mass limit of QCD uncovers symmetries that are not present in the
QCD lagrangian. These symmetries have been applied to physical (finite mass)
systems, such as B and D mesons.
We explore the validity of this approximation in the 't Hooft model
(two-dimensional QCD in the large-N approximation). We find that the large mass
approximation is good, even at the charm mass, for form factors, but it breaks
down for the pseudoscalar decay constant.Comment: 4 pages, 3 figures inc
De Sitter Waves and the Zero Curvature Limit
We show that a particular set of global modes for the massive de Sitter
scalar field (the de Sitter waves) allows to manage the group representations
and the Fourier transform in the flat (Minkowskian) limit. This is in
opposition to the usual acceptance based on a previous result, suggesting the
appearance of negative energy in the limit process. This method also confirms
that the Euclidean vacuum, in de Sitter spacetime, has to be preferred as far
as one wishes to recover ordinary QFT in the flat limit.Comment: 9 pages, latex no figure, to appear in Phys. Rev.
Nonet Symmetry and Two-Body Decays of Charmed Mesons
The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is
studied in the context of nonet symmetry. We have found that it is badly broken
in the PP channels and in the P sector of the PV channels as expected from the
non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also
found that nonet symmetry does not describe the data well. We have found that
this discrepancy cannot be attributed entirely to SU(3) breaking at the usual
level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be
very badly broken. The possibility of resolving the problem in the future is
also discussed.Comment: 9 pages, UTAPHY-HEP-
- …