22 research outputs found

    Myosin II has distinct functions in PNS and CNS myelin sheath formation

    Get PDF
    The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct

    Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier

    Get PDF
    Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region

    Nectin-like proteins mediate axon–Schwann cell interactions along the internode and are essential for myelination

    Get PDF
    Axon–glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo–glial interactions along the internode

    Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system

    Full text link
    Functionally and spatially distinct PI 3-K pathways act either early to promote myelination downstream of axonal Neuregulin1 or late to inhibit myelination downstream of α6β4 integrin and Sgk1
    corecore