47 research outputs found

    Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thickness of the subcutaneous fat layer is an important parameter at all stages of pig production. It is used to inform decisions on dietary requirements to optimize growth, in gilts to promote longevity and finally to assist in the calculation of payments to producers that allow for general adiposity. Currently for reasons of tradition and ease, total adipose thickness measurements are made at one or multiple sites although it has been long recognized that up to three well defined layers (outer (L1), middle (L2), and inner (L3)) may be present to make up the total. Various features and properties of these layers have been described. This paper examines the contribution of each layer to total adipose thickness at three time points and describes the change in thickness of each layer per unit change in body weight in normal growing pigs.</p> <p>Methods</p> <p>A group of nine pigs was examined using 14 MHz linear array transducer on three separate occasions. The average weight was 51, 94 and 124 kg for each successive scan. The time between scanning was approximately 4 weeks. The proportion of each layer to total thickness was modeled statistically with scan session as a variable and the change in absolute thickness of each layer per unit change in body weight was modeled in a random regression model.</p> <p>Results</p> <p>There was a significant change in ratios between scans for the middle and inner layers (<it>P </it>< 0.001). The significant changes were seen between the first and second, and between the first and final, scan sessions. The change in thickness per unit change in body weight was greatest for L2, followed by L1 and L3.</p> <p>Conclusion</p> <p>These results demonstrate that subcutaneous adipose layers grow at different rates relative to each other and to change in body weight and indicate that ultrasound can be used to track these differences.</p

    Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity.</p> <p>Methods</p> <p>Growing pigs (<it>N </it>= 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal.</p> <p>Results</p> <p>Image analysis correctly identified the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5 intercostal spaces cranially.</p> <p>Conclusion</p> <p>The approach to image analysis reported permits the creation of various maps showing adipose thickness or correlation of thickness with other variables by location on the surface of the pig. The method identified novel adipose thickness measurement positions that are superior (as predictors of adiposity) to the site which is in current use. A similar approach could be used in other situations to quantify potential links between subcutaneous adiposity and disease or production traits.</p
    corecore