3 research outputs found

    Design of Selective Benzoxazepin PI3Kδ Inhibitors Through Control of Dihedral Angles

    No full text
    A novel selective benzoxazepin inhibitor of PI3Kδ has been discovered. Beginning from compound <b>3</b>, an αPI3K inhibitor, we utilized structure-based drug design and computational analysis of dihedral torsion angles to optimize for PI3Kδ isoform potency and isoform selectivity. Further medicinal chemistry optimization of the series led to the identification of <b>24</b>, a highly potent and selective inhibitor of PI3Kδ

    Discovery of a Noncovalent, Mutant-Selective Epidermal Growth Factor Receptor Inhibitor

    No full text
    Inhibitors targeting the activating mutants of the epidermal growth factor receptor (EGFR) have found success in the treatment of EGFR mutant positive non-small-cell lung cancer. A secondary point mutation (T790M) in the inhibitor binding site has been linked to the acquired resistance against those first generation therapeutics. Herein, we describe the lead optimization of a series of reversible, pan-mutant (L858R, del<sub>746–750,</sub> T790M/L858R, and T790M/del<sub>746–750</sub>) EGFR inhibitors. By use of a noncovalent double mutant (T790M/L858R and T790M/del<sub>746–750</sub>) selective EGFR inhibitor (<b>2</b>) as a starting point, activities against the single mutants (L858R and del<sub>746–750</sub>) were introduced through a series of structure-guided modifications. The in vitro ADME-PK properties of the lead molecules were further optimized through a number of rational structural changes. The resulting inhibitor (<b>21</b>) exhibited excellent cellular activity against both the single and double mutants of EGFR, demonstrating target engagement in vivo and ADME-PK properties that are suitable for further evaluation. The reversible, noncovalent inhibitors described complement the covalent pan-mutant EGFR inhibitors that have shown encouraging results in recent clinical trials

    Discovery of Novel PI3-Kinase δ Specific Inhibitors for the Treatment of Rheumatoid Arthritis: Taming CYP3A4 Time-Dependent Inhibition

    No full text
    PI3Kδ is a lipid kinase and a member of a larger family of enzymes, PI3K class IA­(α, β, δ) and IB (γ), which catalyze the phosphorylation of PIP2 to PIP3. PI3Kδ is mainly expressed in leukocytes, where it plays a critical, nonredundant role in B cell receptor mediated signaling and provides an attractive opportunity to treat diseases where B cell activity is essential, e.g., rheumatoid arthritis. We report the discovery of novel, potent, and selective PI3Kδ inhibitors and describe a structural hypothesis for isoform (α, β, γ) selectivity gained from interactions in the affinity pocket. The critical component of our initial pharmacophore for isoform selectivity was strongly associated with CYP3A4 time-dependent inhibition (TDI). We describe a variety of strategies and methods for monitoring and attenuating TDI. Ultimately, a structure-based design approach was employed to identify a suitable structural replacement for further optimization
    corecore