45 research outputs found

    Lack of Z-DNA Conformation in Mitomycin-Modified Polynucleotides Having Inverted Circular Dichroism

    Get PDF
    Poly(dG-dC)· poly(dG-dC) and Micrococcus lysodeikticus DNA were modified by exposure to reductively activated mitomycin C, an antitumor antibiotic. The resulting covalent drug-polynucleotide complexes displayed varying degrees of CD inversions, which are strikingly similar to the inverted spectrum observed with Z-DNA. The following criteria have been used to establish, however, that the inverted CD pattern seen in mitomycin C-polynucleotide complexes does not reflect a Z-DNA conformation. (i) The ethanol-induced transition of poly(dG-dC)· poly(dG-dC) from B to Z conformation is not facilitated but rather is inhibited by mitomycin C modification. This may be due to the presence of crosslinks. (ii) Radioimmunoassay indicated no competition for Z-DNA-specific antibody by any of the mitomycin C-modified polynucleotides. (iii) 31P NMR of the complexes yielded a single relatively narrow resonance, which is inconsistent with the dinucleotide repeat characteristic of Z-DNA. Alternative explanations for the inverted CD pattern include a drug-induced left-handed but non-Z conformational change or the superposition of an induced CD onto the CD of B-DNA due to drug-base electronic interactions. These results illustrate the need for caution in interpreting CD changes alone as an indication of Z-DNA conformation

    Degradation of MEPE, DMP1, and Release of SIBLING ASARM-Peptides (Minhibins): ASARM-Peptide(s) Are Directly Responsible for Defective Mineralization in HYP

    Get PDF
    Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) and DMP1 (dentin matrix protein 1) result in X-linked hypophosphatemic rickets (HYP) and autosomal-recessive hypophosphatemic-rickets (ARHR), respectively. Specific binding of PHEX to matrix extracellular phosphoglycoprotein (MEPE) regulates the release of small protease-resistant MEPE peptides [acidic serine- and aspartate-rich MEPE-associated motif (ASARM) peptides]. ASARM peptides are potent inhibitors of mineralization (minhibins) that also occur in DMP1 [MEPE-related small integrin-binding ligand, N-linked glycoprotein (SIBLING) protein]. It is not known whether these peptides are directly responsible for the mineralization defect. We therefore used a bone marrow stromal cell (BMSC) coculture model, ASARM peptides, anti-ASARM antibodies, and a small synthetic PHEX peptide (SPR4; 4.2 kDa) to examine this. Surface plasmon resonance (SPR) and two-dimensional 1H/15N nuclear magnetic resonance demonstrated specific binding of SPR4 peptide to ASARM peptide. When cultured individually for 21 d, HYP BMSCs displayed reduced mineralization compared with wild type (WT) (−87%, P < 0.05). When cocultured, both HYP and WT cells failed to mineralize. However, cocultures (HYP and WT) or monocultures of HYP BMSCs treated with SPR4 peptide or anti-ASARM neutralizing antibodies mineralized normally. WT BMSCs treated with ASARM peptide also failed to mineralize properly without SPR4 peptide or anti-ASARM neutralizing antibodies. ASARM peptide treatment decreased PHEX mRNA and protein (−80%, P < 0.05) and SPR4 peptide cotreatment reversed this by binding ASARM peptide. SPR4 peptide also reversed ASARM peptide-mediated changes in expression of key osteoclast and osteoblast differentiation genes. Western blots of HYP calvariae and BMSCs revealed massive degradation of both MEPE and DMP1 protein compared with the WT. We conclude that degradation of MEPE and DMP-1 and release of ASARM peptides are chiefly responsible for the HYP mineralization defect and changes in osteoblast-osteoclast differentiation.We acknowledge the very kind gift of pure sPHEX by Dr. Philippe Crine (Department of Biochemistry, University of Montreal, and Enobia Pharma). Also, we acknowledge the anti-DMP1 antibodies generously donated by Dr. Larry Fisher, National Institute of Dental and Craniofacial Research, Bethesda, MD. Address all correspondence and requests for reprints to: Peter S. N. Rowe, Department of Internal Medicine, Division of Nephrology and Hypertension, The Kidney Institute, MS 3018, 3901 Rainbow Boulevard, Kansas City, Kansas 66160. E-mail: [email protected]. We acknowledge the generous financial support from the National Institutes of Health to P.S.N.R. (RO-1 AR51598-01; National Institute of Arthritis and Musculoskeletal Diseases). Also, the SPR experiments were performed in the UTHSCSA Center for Macromolecular Interactions, which is supported by grants from the National Cancer Institute (CA54174) and UTHSCSA Executive Research Committee Research fund

    A role for an Hsp70 nucleotide exchange factor in the regulation of synaptic vesicle endocytosis

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 33 (2013): 8009-8021, doi:10.1523/JNEUROSCI.4505-12.2013.Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. After the internalization of a clathrin-coated vesicle, the vesicle must uncoat to replenish the pool of SVs. Clathrin-coated vesicle uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo and whether they play such roles in SV endocytosis in particular is unknown. To address this question, we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:co-chaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so that it could no longer bind and inhibit Hsp110 (a NEF that we find to be highly abundant in brain cytosol), its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis.This work was supported by the National Institutes of Health (Grant #NS029051 to E.M.L. and Grant #NS078165 to J.R.M.).2013-11-0

    Structure of the Hsp110:Hsc70 nucleotide exchange machine.

    Get PDF
    Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein\u27s NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs

    The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism

    No full text
    Hsp70s use ATP to generate forces that disassemble protein complexes and aggregates, and that translocate proteins into organelles. Entropic pulling has been proposed as a novel mechanism, distinct from the more familiar power-stroke and Brownian ratchet models, for how Hsp70s generate these forces. Experimental evidence supports entropic pulling, but this model may not be well understood among scientists studying these systems. In this review we address persistent misconceptions regarding the dynamics of proteins in solution that contribute to this lack of understanding, and we clarify the basic physics of entropic pulling with some simple analogies. We hope that increased understanding of the entropic pulling mechanism will inform future efforts to characterize how Hsp70s function as motors, and how they coordinate with their regulatory cochaperones in mechanochemical cycles that transduce the energy of ATP hydrolysis into physical changes in their protein substrates

    The Role of Molecular Chaperones in Clathrin Mediated Vesicular Trafficking

    Get PDF
    The discovery that the 70 kD ‘uncoating ATPase’, which removes clathrin coats from vesicles after endocytosis, is the constitutively expressed Hsc70 chaperone was a surprise. Subsequent work, however, revealed that uncoating is an archetypal Hsp70 reaction: the cochaperone auxilin, which contains a clathrin binding domain and an Hsc70 binding J domain, recruits Hsc70*ATP to the coat and, concomitant with ATP hydrolysis, transfers it to a hydrophobic Hsc70-binding element found on a flexible tail at the C-terminus of the clathrin heavy-chain. Release of clathrin in association with Hsc70*ADP follows, and the subsequent, persistent association of clathrin with Hsc70 is important to prevent aberrant clathrin polymerization. Thus, the two canonical functions of Hsp70—dissociation of existing protein complexes or aggregates, and binding to a protein to inhibit its inappropriate aggregation—are recapitulated in uncoating. Association of clathrin with Hsc70 in vivo is regulated by Hsp110, an Hsp70 NEF that is itself a member of the Hsp70 family. How Hsp110 activity is itself regulated to make Hsc70-free clathrin available for endocytosis is unclear, though at synapses it’s possible that the influx of calcium that accompanies depolarization activates the Ca++/calmodulin dependent calcineurin phosphatase which then dephosphorylates and activates Hsp110 to stimulate ADP/ATP exchange and release clathrin from Hsc70*ADP:clathrin complexes

    Crystallization of a functionally intact Hsc70 chaperone

    No full text
    corecore