109 research outputs found

    Consecutive assessment of FA and ADC values of normal lumbar nerve roots from the junction of the dura mater

    Get PDF
    Background: Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used in the evaluation of the central nervous system and recently have been reported as a potential tool for diagnosis of the peripheral nerve or the lumbar nerve entrapment. The purpose of this study was to evaluate consecutive changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of normal lumbar nerve roots from the junction of the dura mater. Methods: The lumbar spinal nerves were examined in 6 male healthy volunteers (mean age, 35 years) with no experiences of sciatica, with a 3.0-T MR unit using a five-element phased-array surface coil. DTI was performed with the following imaging parameters: 11084.6/73.7 ms for TR/TE; b-value, 800 s/mm2; MPG, 33 directions; slice thickness, 1.5 mm; and total scan time, 7 min 35 s. ADC and FA values at all consecutive points along the L4, L5 and S1 nerves were quantified on every 1.5 mm slice from the junction of the dura mater using short fiber tracking. Results: ADC values of all L4, 5, and S1 nerve roots decreased linearly up to 15 mm from the dura junction and was constant distally afterward. ADC values in the proximal portion demonstrated S1 > L5 > L4 (p L5 > S1 (p < 0.05). Conclusion: Our study demonstrated that ADC and FA values of each L4, 5, and S1 at the proximal portion from the junction of the dura matter changed linearly. It would be useful to know the normal profile of DTI values by location of each nerve root so that we can detect subtle abnormalities in each nerve root

    Efficient generation of adenovirus vectors carrying the Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas)12a system by suppressing Cas12a expression in packaging cells

    Get PDF
    Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas) 9 system is a powerful tool for genome editing and still being aggressively improved. Cas12a, a recently discovered Cas9 ortholog, is expected to become complementary to Cas9 due to its unique characteristics. Previously we attempted to establish an adenovirus (Ad) vector-mediated delivery of CRISPR-Cas12a system since Ad vector is widely used for gene transfer in basic researches and medical applications. However, we found difficulties preparing of Ad vectors at an adequate titer. In this study, we have developed Ad vectors that conditionally express Cas12a either by a tetracycline-controlled promoter or a hepatocyte specific promoter to avoid putative inhibitory effects of Cas12a. These vectors successfully proliferated in packaging cells, HEK293 cells, and were recovered at high titers. We have also developed packaging cells that express shRNA for Cas12a to suppress expression of Cas12a. Using the cells, the Ad vector directing constitutive expression of Cas12a proliferated efficiently and was successfully recovered at a high titer. Overall, we improved recovery of Ad vectors carrying CRISPR-Cas12a system, thus provided them as a tool in genome editing researches.Tsukamoto T., Sakai E., Nishimae F., et al. Efficient generation of adenovirus vectors carrying the Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas)12a system by suppressing Cas12a expression in packaging cells. Journal of Biotechnology 304, 1 (2019); https://doi.org/10.1016/j.jbiotec.2019.08.004

    Structural and phylogenetic comparison of napsin genes: The duplication, loss of function and human-specific pseudogenization of napsin B

    Get PDF
    Aspartic proteinases form a widely distributed protein superfamily, including cathepsin D, cathepsin E, pepsins, renin, BACE and napsin. Human napsin genes are located on human chromosome 19q13, which comprises napsin A and napsin B. Napsin B has been annotated as a pseudogene because it lacks an in-frame stop codon; its nascent chains are cotranslationally degraded. Until recently, there have been no studies concerning the molecular evolution of the napsin protein family in the human genome. In the present study, we investigated the evolution and gene organization of the napsin protein family. Napsin B orthologs are primarily distributed in primates, while napsin A orthologs are the only napsin genes in other species. The corresponding regions of napsin B in the available sequences from primate species contain an in-frame stop codon at a position equivalent to that of human napsin A. In addition, a rare single-nucleotide polymorphism (SNP) that creates a proper stop codon in human napsin B was identified using HapMap populations. Recombinant protein expression and three-dimensional comparative modeling revealed that napsin B exhibits residual activity toward synthetic aspartic protease substrates compared with napsin A, presumably through a napsin B-specific Arg287 residue. Thus, napsin B was duplicated from napsin A during the early stages of primate evolution, and the subsequent loss of napsin B function during primate evolution reflected ongoing human-specific napsin B pseudogenization

    Rab11A Functions as a Negative Regulator of Osteoclastogenesis through Dictating Lysosome-Induced Proteolysis of c-fms and RANK Surface Receptors

    Get PDF
    Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-kappa B ligand (RANKL). Rab11A GTPase, belonging to Rab11 subfamily representing the largest branch of Ras superfamily of small GTPases, has been identified as one of the crucial regulators of cell surface receptor recycling. Nevertheless, the regulatory role of Rab11A in osteoclast differentiation has been completely unknown. In this study, we found that Rab11A was strongly upregulated at a late stage of osteoclast differentiation derived from bone marrow-derived macrophages (BMMs) or RAW-D murine osteoclast precursor cells. Rab11A silencing promoted osteoclast formation and significantly increased the surface levels of c-fms and receptor activator of nuclear factor-kappa B (RANK) while its overexpression attenuated osteoclast formation and the surface levels of c-fms and RANK. Using immunocytochemical staining for tracking Rab11A vesicular localization, we observed that Rab11A was localized in early and late endosomes, but not lysosomes. Intriguingly, Rab11A overexpression caused the enhancement of fluorescent intensity and size-based enlargement of early endosomes. Besides, Rab11A overexpression promoted lysosomal activity via elevating the endogenous levels of a specific lysosomal protein, LAMP1, and two key lysosomal enzymes, cathepsins B and D in osteoclasts. More importantly, inhibition of the lysosomal activity by chloroquine, we found that the endogenous levels of c-fms and RANK proteins were enhanced in osteoclasts. From these observations, we suggest a novel function of Rab11A as a negative regulator of osteoclastogenesis mainly through (i) abolishing the surface abundance of c-fms and RANK receptors, and (ii) upregulating lysosomal activity, subsequently augmenting the degradation of c-fms and RANK receptors, probably via the axis of early endosomes-late endosomes-lysosomes in osteoclasts

    Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation

    Get PDF
    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy

    Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages

    Get PDF
    Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages

    Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice

    Get PDF
    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H 2O 2) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs

    The Inhibitory Role of Rab11b in Osteoclastogenesis through Triggering Lysosome-Induced Degradation of c-Fms and RANK Surface Receptors

    Get PDF
    Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase

    Engineering Bone Formation from Human Dental Pulp- and Periodontal Ligament-Derived Cells.

    Get PDF
    A robust method for inducing bone formation from cultured dental mesenchymal cells has not been established. In this study, a method for generating bone tissue in vivo from cultured human dental pulp- and periodontal ligament-derived cells (DPCs and PDLCs, respectively) was designed using exogenous bone morphogenetic protein 2 (BMP2). DPCs and PDLCs showed enhanced alkaline phosphatase (ALP) activity and calcified nodule formation in medium containing dexamethasone, beta-glycerophosphate, and ascorbic acid (osteogenic medium). However, the addition of recombinant human bone morphogenetic protein 2 (rhBMP2) to osteogenic medium remarkably increased ALP activity and in vitro calcification above the increases observed with osteogenic medium alone. rhBMP2 also significantly upregulated the expression of osteocalcin, osteopontin, and dentin matrix protein 1 mRNA in both cell types cultured in osteogenic medium. Finally, we detected prominent bone-like tissue formation in vivo when cells had been exposed to rhBMP2 in osteogenic medium. In contrast, treatments with osteogenic medium or rhBMP2 alone could not induce abundant mineralized tissue formation. We propose here that treatment with rhBMP2 in osteogenic medium can make dental mesenchymal tissues a highly useful source of cells for bone tissue engineering. In addition, both DPCs and PDLCs showed similar and remarkable osteo-inducibility.The original publication is available at www.springerlink.co

    Dual Effects of Liquiritigenin on the Proliferation of Bone Cells: Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Differentiation

    Get PDF
    Bone is constantly controlled by a balance between osteoblastic bone formation and osteoclastic bone resorption. Liquiritigenin is a plant-derived flavonoid and has various pharmacological effects, such as antioxidative, antitumor, and antiinflammatory effects. Here, we show that liquiritigenin has dual effects on the proliferation of bone cells, regarding the promotion of osteoblast differentiation and the inhibition of osteoclast differentiation. Liquiritigenin-treated murine osteoblastic MC3T3-E1 cells showed an increased alkaline phosphatase activity and enhanced phosphorylation of Smad1/5 compared with untreated cells. Moreover, liquiritigenin inhibited osteoclast differentiation, its bone-resorption activity through slightly decreased the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and inhibitor of nuclear factor kappa Bα; however, the phosphorylation of Akt and p38 slightly increased in bone marrow-derived osteoclasts. The expression levels of the osteoclast marker proteins nuclear factor of activated T-cell cytoplasmic-1, Src, and cathepsin K diminished. These results suggest that liquiritigenin may be useful as a therapeutic and/or preventive agent for osteoporosis or inflammatory bone diseases
    • …
    corecore