11 research outputs found

    Human Osteoblast Differentiation and Bone Formation: Growth Factors, Hormones and Regulatory Networks

    Get PDF
    Osteoporosis is the most common bone disease and is characterized by low bone mass, micro architectural deterioration and decreased bone quality resulting in increased risk of fractures. Osteoblasts, the bone forming cells, play a crucial role in the regulation of bone mass and bone quality. Osteoblasts are of mesenchymal origin and undergo a complex differentiation process regulated by many endocrine and autocrine factors. In order to develop novel bone anabolic drugs, more knowledge concerning osteoblast biology is required. In this thesis we investigated the processes of human osteoblast differentiation and matrix mineralization. Human osteoblast-based models of bone formation were used in which the role of glucocorticoids (GCs), 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the Wnt signaling pathway and the activin A-follistatin system were studied

    Calcifying vascular smooth muscle cells and osteoblasts: Independent cell types exhibiting extracellular matrix and biomineralization-related mimicries

    Get PDF
    Background: Ectopic vascular calcifications represent a major clinical problem associated with cardiovascular disease and mortality. However, the mechanisms underlying pathological vascular calcifications are largely unknown hampering the development of therapies to tackle this life threatening medical condition. Results: In order to gain insight into the genes and mechanisms driving this pathological calcification process we analyzed the transcriptional profile of calcifying vascular smooth muscle cells (C-VSMCs). These profiles were compared to differentiating osteoblasts, cells that constitute their physiological calcification counterparts in the body. Overall the transcriptional program of C-VSMC and osteoblasts did not overlap. Several genes, some of them relevant for bone formation, were distinctly modulated by C-VSMCs which did not necessarily lose their smooth muscle cell markers while calcifying. Bioinformatics gene clustering and correlation analysis disclosed limited bone-related mechanisms being shared by two cell types. Extracellular matrix (ECM) and biomineralization genes represented common denominators between pathological vascular and physiological bone calcifications. These genes constitute the strongest link between these cells and represent potential drivers for their shared end-point phenotype. Conclusions: The analyses support the hypothesis that VSMC trans-differentiate into C-VSMCs keeping their own identity while using mechanisms that osteoblasts use to mineralize. The data provide novel insights into groups of genes and biological processes shared in MSC and VSMC osteogenic differentiation. The distinct gene regulation between C-VSMC and osteoblasts might hold clues to find cell-specific pathway modulations, opening the possibility to tackle undesired vascular calcifications without disturbing physiologic bone formation and vice versa

    Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation

    Get PDF
    Abstract Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge about this process, we conducted proteomics analysis in human immortalized preosteoblasts (SV-HFO) able to differentiate and mineralize. We identified 381 proteins expressed during the time course of osteoblast differentiation. Gene ontology analysis revealed an overrepresentation of protein categories established as important players for osteoblast differentiation, bone formation, and mineralization such as pyrophosphatases. Proteins involved in antigen presentation, energy metabolism and cytoskeleton rearrangement constitute other overrepresented processes, whose function, albeit interesting, is not fully understood in the context of osteoblast differentiation and bone formation. Correlation analysis, based on quantitative data, revealed a biphasic osteoblast differentiation, encompassing a premineralization and a mineralization period. Identified differentially expressed proteins between mineralized and nonmineralized cells include cytoskeleton (e.g., CCT2, PLEC1, and FLNA) and extracellular matrix constituents (FN1, ANXA2, and LGALS1) among others. FT-ICR-MS data obtained for FN1, ANXA2, and LMNA shows a specific regulation of these proteins during the different phases of osteoblast differentiation. Taken together, this study increases our understanding of the proteomics changes that accompany osteoblast differentiation and may permit the discovery of novel modulators of bone formation

    Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans

    Get PDF
    Ischemic preconditioning (IPC) has been protective against ischemia-reperfusion injury (IRI), but the underlying mechanism is poorly understood. We examined whether IPC modulates the early inflammatory response after IRI. Nineteen healthy males participated in a randomised crossover trial with and without IPC before IRI. IPC and IRI were performed by cuff inflation on the forearm. IPC consisted of four cycles of five minutes followed by five minutes of reperfusion. IRI consisted of twenty minutes followed by 15 min of reperfusion. Blood was collected at baseline, 0 min, 85 min and 24 h after IRI. Circulating monocytes, T-cells subsets and dendritic cells together with intracellular activation markers were quantified by flow cytometry. Luminex measured a panel of inflammation-related cytokines in plasma. IRI resulted in dynamic regulations of the measured immune cells and their intracellular activation markers, however IPC did not significantly alter these patterns. Neither IRI nor the IPC protocol significantly affected the levels of inflammatory-related cytokines. In healthy volunteers, it was not possible to detect an effect of the investigated IPC-protocol on early IRI-induced inflammatory responses. This study indicates that protective effects of IPC on IRI is not explained by direct modulation of early inflammatory events

    1α,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles

    Get PDF
    1α,25-dihydroxyitamin D3 (1,25D3) deficiency leads to impaired bone mineralization. We used the human pre-osteoblastic cell line SV-HFO, which forms within 19 days of culture an extracellular matrix that starts to mineralize around day 12, to examine th

    Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli

    Get PDF
    Normothermic machine perfusion (NMP) of kidneys offers the opportunity to perform active interventions, such as the addition of mesenchymal stromal cells (MSCs), to an isolated organ prior to transplantation. The purpose of this study was to determine whether administering MSCs to kidneys during NMP is feasible, what the effect of NMP is on MSCs and whether intact MSCs are retained in the kidney and to which structures they home. Viable porcine kidneys were obtained from a slaughterhouse. Kidneys were machine perfused during 7 h at 37 °C. After 1 h of perfusion either 0, 105, 106 or 107 human adipose tissue derived MSCs were added. Additional ex vivo perfusions were conducted with fluorescent pre-labelled bone-marrow derived MSCs to assess localisation and survival of MSCs during NMP. After NMP, intact MSCs were detected by immunohistochemistry in the lumen of glomerular capillaries, but only in the 107 MSC group. The experiments with fluorescent pre-labelled MSCs showed that only a minority of glomeruli were positive for infused MSCs and most of these glomeruli contained multiple MSCs. Flow cytometry showed that the number of infused MSCs in the perfusion circuit steeply declined during NMP to approximately 10%. In conclusion, the number of circulating MSCs in the perfusate decreases rapidly in time and after NMP only a small portion of the MSCs are intact and these appear to be clustered in a minority of glomeruli

    Evidence for multiple peroxisome proliferator-activated receptor γ transcripts in bone: fine-tuning by hormonal regulation and mRNA stability

    No full text
    The expression, regulation and functional significance of multiple Peroxisome proliferator-activated receptor γ transcript variants in bone were studied. PPARG transcripts giving rise to PPARg-1 protein were expressed in human osteoblasts, whereas PPARG-2 transcript and protein remained virtually absent. PPARG expression underwent homologous regulation, was upregulated during differentiation and directly induced by the osteogenic hormone dexamethasone, suggesting a role of PPARg-1 for osteogenesis. Differences between the stabilities of PPARG-1, -3 and -4 were observed. We hypothesize that cell-specific expression patterns of multiple PPARG transcript variants encoding for the same protein but differing in mRNA stabilities enable a fine-tuning of PPARG action, which eventually supports a well-adjusted signal transduction between the cell and its environment

    Activin a suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production

    No full text
    During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration

    A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone

    No full text
    Bone-marrow adipogenesis is an aging-related phenomenon and correlated with osteoporosis. The latter is a prevalent bone disease in the elderly leading to increased fracture risk and mortality. It is widely hypothesized that the underlying molecular mechanism includes a shift in the commitment of mesenchymal stem cells (MSC) from the osteogenic lineage to the adipogenic lineage. Lineage skewing is at least partially a result of transcriptional changes. The nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPAR-gamma) has been proposed as a major decision factor in MSC lineage commitment promoting adipogenesis at the expense of osteogenesis. Here we found that PPAR-gamma acted unexpectedly to stimulate osteoblast differentiation from human bone marrow-derived MSCs. Both rosiglitazone-mediated activation and overexpression of PPAR-gamma caused acceleration of osteoblast differentiation. Conversely, shRNAi-mediated PPAR-gamma knockdown diminished osteoblast differentiation. MSCs that were treated with rosiglitazone did not preferentially differentiate into adipocytes. However, the rosiglitazone-mediated acceleration of osteoblast differentiation was followed by increased accumulation of reactive oxygen species and apoptosis. In contrast to the osteogenic lineage, cells of the adipogenic lineage were protected from this. Our data support a new concept on bone health that adds to the explanation of the clinically observed suppressive action of activated PPAR-gamma on bone and the associated phenomenon of bone marrow adipogenesis. This concept is based on a higher susceptibility of the osteogenic than the adipogenic lineage to oxidative stress and apoptosis that is preferentially triggered in the osteoblasts by activated PPAR-gamma

    Basic techniques in human mesenchymal stem cell cultures: Differentiation into osteogenic and adipogenic lineages, genetic perturbations, and phenotypic analyses

    No full text
    This unit describes basic techniques in human mesenchymal stem cell (hMSC) cultures. It includes protocols for the differentiation of hMSCs into osteogenic and adipogenic lineages, genetic perturbations, and phenotypic analyses. hMSCs can be differentiated with dexamethasone and β-glycerophosphate into mineralizing osteoblasts within 2 to 3 weeks, or with dexamethasone, indomethacin, and 3-isobutyl-1-methylxanthine into lipid vesicle-containing adipocytes within 1 to 2 weeks. Phenotypic changes during those highly dynamic differentiation processes can be detected by biochemical and histological assays and gene expression analyses of differentiation markers. In addition, this unit describes an electroporation method that allows the transient genetic perturbation of hMSCs
    corecore