41 research outputs found

    Developing more generalizable prediction models from pooled studies and large clustered data sets.

    Get PDF
    Prediction models often yield inaccurate predictions for new individuals. Large data sets from pooled studies or electronic healthcare records may alleviate this with an increased sample size and variability in sample characteristics. However, existing strategies for prediction model development generally do not account for heterogeneity in predictor-outcome associations between different settings and populations. This limits the generalizability of developed models (even from large, combined, clustered data sets) and necessitates local revisions. We aim to develop methodology for producing prediction models that require less tailoring to different settings and populations. We adopt internal-external cross-validation to assess and reduce heterogeneity in models' predictive performance during the development. We propose a predictor selection algorithm that optimizes the (weighted) average performance while minimizing its variability across the hold-out clusters (or studies). Predictors are added iteratively until the estimated generalizability is optimized. We illustrate this by developing a model for predicting the risk of atrial fibrillation and updating an existing one for diagnosing deep vein thrombosis, using individual participant data from 20 cohorts (N = 10 873) and 11 diagnostic studies (N = 10 014), respectively. Meta-analysis of calibration and discrimination performance in each hold-out cluster shows that trade-offs between average and heterogeneity of performance occurred. Our methodology enables the assessment of heterogeneity of prediction model performance during model development in multiple or clustered data sets, thereby informing researchers on predictor selection to improve the generalizability to different settings and populations, and reduce the need for model tailoring. Our methodology has been implemented in the R package metamisc

    Seasonal variation of serotonin turnover in human cerebrospinal fluid, depressive symptoms and the role of the 5-HTTLPR.

    Get PDF
    Studying monoaminergic seasonality is likely to improve our understanding of neurobiological mechanisms underlying season-associated physiological and pathophysiological behavior. Studies of monoaminergic seasonality and the influence of the serotonin-transporter-linked polymorphic region (5-HTTLPR) on serotonin seasonality have yielded conflicting results, possibly due to lack of power and absence of multi-year analyses. We aimed to assess the extent of seasonal monoamine turnover and examined the possible involvement of the 5-HTTLPR. To determine the influence of seasonality on monoamine turnover, 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured in the cerebrospinal fluid of 479 human subjects collected during a 3-year period. Cosine and non-parametric seasonal modeling were applied to both metabolites. We computed serotonin (5-HT) seasonality values and performed an association analysis with the s/l alleles of the 5-HTTLPR. Depressive symptomatology was assessed using the Beck Depression Inventory-II. Circannual variation in 5-HIAA fitted a spring-peak cosine model that was significantly associated with sampling month (P=0.0074). Season of sampling explained 5.4% (P=1.57 Ă— 10(-7)) of the variance in 5-HIAA concentrations. The 5-HTTLPR s-allele was associated with increased 5-HIAA seasonality (standardized regression coefficient=0.12, P=0.020, N=393). 5-HIAA seasonality correlated with depressive symptoms (Spearman's rho=0.13, P=0.018, N=345). In conclusion, we highlight a dose-dependent association of the 5-HTTLPR with 5-HIAA seasonality and a positive correlation between 5-HIAA seasonality and depressive symptomatology. The presented data set the stage for follow-up in clinical populations with a role for seasonality, such as affective disorders

    Smartphone detection of atrial fibrillation using photoplethysmography: a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: Timely diagnosis of atrial fibrillation (AF) is essential to reduce complications from this increasingly common condition. We sought to assess the diagnostic accuracy of smartphone camera photoplethysmography (PPG) compared with conventional electrocardiogram (ECG) for AF detection. METHODS: This is a systematic review of MEDLINE, EMBASE and Cochrane (1980-December 2020), including any study or abstract, where smartphone PPG was compared with a reference ECG (1, 3 or 12-lead). Random effects meta-analysis was performed to pool sensitivity/specificity and identify publication bias, with study quality assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) risk of bias tool. RESULTS: 28 studies were included (10 full-text publications and 18 abstracts), providing 31 comparisons of smartphone PPG versus ECG for AF detection. 11 404 participants were included (2950 in AF), with most studies being small and based in secondary care. Sensitivity and specificity for AF detection were high, ranging from 81% to 100%, and from 85% to 100%, respectively. 20 comparisons from 17 studies were meta-analysed, including 6891 participants (2299 with AF); the pooled sensitivity was 94% (95% CI 92% to 95%) and specificity 97% (96%-98%), with substantial heterogeneity (p<0.01). Studies were of poor quality overall and none met all the QUADAS-2 criteria, with particular issues regarding selection bias and the potential for publication bias. CONCLUSION: PPG provides a non-invasive, patient-led screening tool for AF. However, current evidence is limited to small, biased, low-quality studies with unrealistically high sensitivity and specificity. Further studies are needed, preferably independent from manufacturers, in order to advise clinicians on the true value of PPG technology for AF detection

    Generalisability of Randomised Controlled Trials in Heart Failure with Reduced Ejection Fraction

    Get PDF
    BACKGROUND: Heart failure (HF) trials have stringent in- and ex- clusion criteria, but limited data exists regarding generalisability of trials. We compared patient characteristics and outcomes between patients with HF and reduced ejection fraction (HFrEF) in trials and observational registries. METHODS AND RESULTS: Individual patient data for 16922 patients from five randomised clinical trials and 46914 patients from two HF registries were included. The registry patients were categorised into trial-eligible and non-eligible groups using the most commonly used in- and ex-clusion criteria. A total of 26104 (56%) registry patients fulfilled the eligibility criteria. Unadjusted all-cause mortality rates at one year were lowest in the trial population (7%), followed by trial-eligible patients (12%) and trial-non-eligible registry patients (26%). After adjustment for age and sex, all-cause mortality rates were similar between trial participants and trial-eligible registry patients (standardised mortality ratio (SMR) 0.97; 95% confidence interval (CI) 0.92 -1.03) but cardiovascular mortality was higher in trial participants (SMR 1.19; 1.12 -1.27). After full case-mix adjustment, the SMR for cardiovascular mortality remained higher in the trials at 1.28 (1.20- 1.37) compared to RCT-eligible registry patients. CONCLUSION: In contemporary HF registries, over half of HFrEF patients would have been eligible for trial enrolment. Crude clinical event rates were lower in the trials, but, after adjustment for case-mix, trial participants had similar rates of survival as registries. Despite this, they had about 30% higher cardiovascular mortality rates. Age and sex were the main drivers of differences in clinical outcomes between HF trials and observational HF registries

    Sex differences in the generalizability of randomized clinical trials in heart failure with reduced ejection fraction

    Get PDF
    Aims: In order to understand how sex differences impact the generalizability of randomized clinical trials (RCTs) in patients with heart failure (HF) and reduced ejection fraction (HFrEF), we sought to compare clinical characteristics and clinical outcomes between RCTs and HF observational registries stratified by sex. Methods and results: Data from two HF registries and five HFrEF RCTs were used to create three subpopulations: one RCT population (n = 16 917; 21.7% females), registry patients eligible for RCT inclusion (n = 26 104; 31.8% females), and registry patients ineligible for RCT inclusion (n = 20 810; 30.2% females). Clinical endpoints included all-cause mortality, cardiovascular mortality, and first HF hospitalization at 1 year. Males and females were equally eligible for trial enrolment (56.9% of females and 55.1% of males in the registries). One-year mortality rates were 5.6%, 14.0%, and 28.6% for females and 6.9%, 10.7%, and 24.6% for males in the RCT, RCT-eligible, and RCT-ineligible groups, respectively. After adjusting for 11 HF prognostic variables, RCT females showed higher survival compared to RCT-eligible females (standardized mortality ratio [SMR] 0.72; 95% confidence interval [CI] 0.62–0.83), while RCT males showed higher adjusted mortality rates compared to RCT-eligible males (SMR 1.16; 95% CI 1.09–1.24). Similar results were also found for cardiovascular mortality (SMR 0.89; 95% CI 0.76–1.03 for females, SMR 1.43; 95% CI 1.33–1.53 for males). Conclusion: Generalizability of HFrEF RCTs differed substantially between the sexes, with females having lower trial participation and female trial participants having lower mortality rates compared to similar females in the registries, while males had higher than expected cardiovascular mortality rates in RCTs compared to similar males in registries
    corecore