23 research outputs found

    The impact of omega-3 fatty acids on the evolution of acinetobacter baumannii drug resistance

    Get PDF
    Published 17 November 2021The bacterial pathogen Acinetobacter baumannii has emerged as an urgent threat to health care systems. The prevalence of multidrug resistance in this critical human pathogen is closely associated with difficulties in its eradication from the hospital environment and its recalcitrance to treatment during infection. The development of resistance in A. baumannii is in part due to substantial plasticity of its genome, facilitating spontaneous genomic evolution. Many studies have investigated selective pressures imposed by antibiotics on genomic evolution, but the influence of high-abundance bioactive molecules at the host-pathogen interface on mutation and rates of evolution is poorly understood. Here, we studied the roles of host fatty acids in the gain in resistance to common antibiotics. We defined the impact of the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid on the development of resistance to erythromycin in A. baumannii strain AB5075_UW using a microevolutionary approach. We employed whole-genome sequencing and various phenotypic analyses to characterize microbe-lipid-antibiotic interactions. Cells exposed to erythromycin in the presence of the fatty acids displayed significantly lower rates of development of resistance to erythromycin and, importantly, tetracycline. Subsequent analyses defined diverse means by which host fatty acids influence the mutation rates. This work has highlighted the critical need to consider the roles of host fatty acids in A. baumannii physiology and antimicrobial resistance. Collectively, we have identified a novel means to curb the development of resistance in this critical human pathogen. IMPORTANCE The global distribution of multidrug resistance in A. baumannii has necessitated seeking not only alternative therapeutic approaches but also the means to limit the development of resistance in clinical settings. Highly abundant host bioactive compounds, such as polyunsaturated fatty acids, are readily acquired by A. baumannii during infection and have been illustrated to impact the bacterium's membrane composition and antibiotic resistance. In this work, we show that in vitro supplementation with host polyunsaturated fatty acids reduces the rate at which A. baumannii gains resistance to erythromycin and tetracycline. Furthermore, we discover that the impact on resistance development is closely associated with the primary antimicrobial efflux systems of A. baumannii, which represent one of the major drivers of clinical resistance. Overall, this study emphasizes the potential of host macromolecules in novel approaches to circumvent the difficulties of multidrug resistance during A. baumannii treatment, with fatty acid supplements such as fish oil providing safe and cost-effective ways to enhance host tolerance to bacterial infections.Maoge Zang, Felise G. Adams, Karl A. Hassan, Bart A. Eijkelkam

    To make or take: bacterial lipid homeostasis during Infection

    Get PDF
    Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium’s lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy.Felise G. Adams, Claudia Trappetti, Jack K. Waters, Maoge Zang, Erin B. Brazel, James C. Paton, Marten F. Snel, Bart A. Eijkelkam

    The role of the copA copper efflux system in acinetobacter baumannii virulence

    Get PDF
    Acinetobacter baumannii has emerged as one of the leading causative agents of nosocomial infections. Due to its high level of intrinsic and adapted antibiotic resistance, treatment failure rates are high, which allows this opportunistic pathogen to thrive during infection in immune-compromised patients. A. baumannii can cause infections within a broad range of host niches, with pneumonia and bacteraemia being associated with the greatest levels of morbidity and mortality. Although its resistance to antibiotics is widely studied, our understanding of the mechanisms required for dealing with environmental stresses related to virulence and hospital persistence, such as copper toxicity, is limited. Here, we performed an in silico analysis of the A. baumannii copper resistome, examining its regulation under copper stress. Using comparative analyses of bacterial P-type ATPases, we propose that A. baumannii encodes a member of a novel subgroup of P1B-1 ATPases. Analyses of three putative inner membrane copper efflux systems identified the P1B-1 ATPase CopA as the primary mediator of cytoplasmic copper resistance in A. baumannii. Using a murine model of A. baumannii pneumonia, we reveal that CopA contributes to the virulence of A. baumannii. Collectively, this study advances our understanding of how A. baumannii deals with environmental copper toxicity, and it provides novel insights into how A. baumannii combats adversities encountered as part of the host immune defence.Saleh F. Alquethamy, Marjan Khorvash , Victoria G. Pederick, Jonathan J. Whittall, James C. Paton, Ian T. Paulsen, Karl A. Hassan, Christopher A. McDevitt and Bart A. Eijkelkam

    Identification of novel Acinetobacter baumannii host fatty acid stress adaptation strategies

    Get PDF
    Free fatty acids hold important immune-modulatory roles during infection. However, the host's long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii β-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections.IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target.Jhih-Hang Jiang, Karl A. Hassan, Stephanie L. Begg, Thusitha W. T. Rupasinghe, Varsha Naidu, Victoria G. Pederick, Marjan Khorvash, Jonathan J. Whittall, James C. Paton, Ian T. Paulsen, Christopher A. McDevitt, Anton Y. Peleg, Bart A. Eijkelkam

    Advanced resistance studies identify two discrete mechanisms in staphylococcus aureus to overcome antibacterial compounds that target biotin protein ligase

    Get PDF
    Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10-9) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in S. aureus.Andrew J. Hayes, Jiulia Satiaputra, Louise M. Sternicki, Ashleigh S. Paparella, Zikai Feng, Kwang J. Lee ... et al

    Bacterial adaptation strategies to host-derived fatty acids

    No full text
    Fatty acids (FAs) are potent antimicrobials which hold great promise as viable alternatives or complements to conventional antibiotics. Intriguingly, bacteria are well equipped to use environmental FAs as energy sources and/or building blocks for their membrane lipids. Furthermore, these microbes display a wide array of mechanisms to prevent or mitigate FA toxicity. In this review we discuss strategies that bacteria use to thrive despite extensive exposure to host-derived antimicrobial FAs. We also highlight the altered response of these FA-adapted bacteria to antibiotics. Given the ubiquitous nature of FAs in various host environments, deciphering bacterial adaptation strategies to FAs is of prime importance. This knowledge may pave the way for a rational design of FA-based combination therapies with antibiotics.Arnaud Kengmo Tchoupa, Bart A. Eijkelkamp, and Andreas Pesche

    Identification of the Shigella flexneri Wzy Domain Modulating WzzpHS-2 Interaction and Detection of the Wzy/Wzz/Oag Complex

    No full text
    Shigella flexneri implements the Wzy-dependent pathway to biosynthesize the O antigen (Oag) component of its surface lipopolysaccharide. The inner membrane polymerase WzySF catalyzes the repeat addition of undecaprenol-diphosphate-linked Oag (Und-PP-RUs) to produce a polysaccharide, the length of which is tightly regulated by two competing copolymerase proteins, WzzSF (short-type Oag; 10 to 17 RUs) and WzzpHS-2 (very-long-type Oag; .90 RUs). The nature of the interaction between WzySF and WzzSF/ WzzpHS-2 in Oag polymerization remains poorly characterized, with the majority of the literature characterizing the individual protein constituents of the Wzy-dependent pathway. Here, we report instead a major investigation into the specific binding interactions of WzySF with its copolymerase counterparts. For the first time, a region of WzySF that forms a unique binding site for WzzpHS-2 has been identified. Specifically, this work has elucidated key WzySF moieties at the N- and C-terminal domains (NTD and CTD) that form an intramolecular pocket modulating the WzzpHS-2 interaction. Novel copurification data highlight that disruption of residues within this NTD-CTD pocket impairs the interaction with WzzpHS-2 without affecting WzzSF binding, thereby specifically disrupting polymerization of longer polysaccharide chains. This study provides a novel understanding of the molecular interaction of WzySF with WzzSF/WzzpHS-2 in the Wzy-dependent pathway and, furthermore, detects the Wzy/Wzz/Und-PP-Oag complex for the first time. Beyond S. flexneri, this work may be extended to provide insight into the interactions between protein homologues expressed by related species, especially members of Enterobacteriaceae, that produce dual Oag chain length determinants.Alice Ascari, Elizabeth Ngoc Hoa Tran, Bart A. Eijkelkamp, Renato Morona

    Shigella flexneri Adapts to Niche-Specific Stresses through Modifications in Cell Envelope Composition and Decoration

    No full text
    Shigella flexneri is the primary causative agent of worldwide shigellosis. As the pathogen transverses the distinct niches of the gastrointestinal tract it necessitates dynamic adaptation strategies to mitigate host antimicrobials such as dietary fatty acids (FAs) and the bile salt, deoxycholate (DOC). This study investigates the dynamics of the S. flexneri cell envelope, by interrogating adaptations following FA or DOC exposure. We deciphered the effects of FAs and DOC on bacterial membrane fatty acid and lipopolysaccharide (LPS) compositions. We identified novel LPS-based strategies by the pathogen to support resistance to these host compounds. In particular, expression of S. flexneri very-long O antigen (VL-Oag) LPS was found to play a central role in stress mitigation, as VL-Oag protects against antimicrobial FAs, but its presence rendered S. flexneri susceptible to DOC stress. Collectively, this work underpins the importance for S. flexneri to maintain appropriate regulation of cell envelope constituents, in particular VL-Oag LPS, to adequately adapt to diverse stresses during infection.Alice Ascari, Jack K. Waters, Renato Morona, and Bart A. Eijkelkam

    Detection of a disulphide bond and conformational changes in Shigella flexneri Wzy, and the role of cysteine residues in polymerase activity

    No full text
    Shigella flexneri utilises the Wzy-dependent pathway for the production of a plethora of complex polysaccharides, including the lipopolysaccharide O-antigen (Oag) component. The inner membrane protein WzySF polymerises Oag repeat units, whilst two co-polymerase proteins, WzzSF and WzzpHS-2, together interact with WzySF to regulate production of short- (S-Oag) and very long- (VL-Oag) Oag modal lengths, respectively. The 2D arrangement of WzySF transmembrane and soluble regions has been previously deciphered, however, attaining information on the 3D structural and conformational arrangement of WzySF, or any homologue, has proven difficult. For the first time, the current study detected insights into the in situ WzySF arrangement. In vitro assays using thiol-reactive PEG-maleimide were used to probe WzySF conformation, which additionally detected novel, unique conformational changes in response to interaction with intrinsic factors, including WzzSF and WzzpHS-2, and extrinsic factors, such as temperature. Site-directed mutagenesis of WzySF cysteine residues revealed the presence of a putative intramolecular disulphide bond, between cysteine moieties 13 and 60. Subsequent ana- lyses highlighted both the structural and functional importance of WzySF cysteines. Substitution of WzySF cysteine residues significantly decreased biosynthesis of the VL-Oag modal length, without disruption to S-Oag production. This phenotype was corroborated in the absence of co-polymerase competition for WzySF interaction. These data suggest WzySF cysteine substitutions directly impair the interaction between Wzy/WzzpHS-2, without altering the Wzy/WzzSF interplay, and in combination with structural data, we propose that the N- and C-termini of WzySF are arranged in close proximity, and together may form the unique WzzpHS-2 interaction site.Alice Ascari, Elizabeth Ngoc Hoa Tran, Bart A. Eijkelkamp, Renato Moron

    Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases

    Get PDF
    Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.Emily M. Cross, Felise G. Adams, Jack K. Waters, David Aragão, Bart A. Eijkelkamp, Jade K. Forwoo
    corecore