5 research outputs found

    Reversible Changes in Resistance of Perovskite Nickelate NdNiO<sub>3</sub> Thin Films Induced by Fluorine Substitution

    No full text
    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in perovskite nickelate NdNiO<sub>3</sub> epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO<sub>3–<i>x</i></sub>F<sub><i>x</i></sub> films is controlled with precision by varying the reaction time. The fully fluorinated film (<i>x</i> ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO<sub>3</sub>, which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from +3 to +2) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO<sub>3</sub> after annealing in an oxygen atmosphere. By application of the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated

    In Situ Hard X‑ray Photoelectron Study of O<sub>2</sub> and H<sub>2</sub>O Adsorption on Pt Nanoparticles

    No full text
    To improve the efficiency of Pt-based cathode catalysts in polymer electrolyte fuel cells, understanding of the oxygen reduction process at surfaces and interfaces in the molecular level is essential. In this study, H<sub>2</sub>O and O<sub>2</sub> adsorption and dissociation as the first step of the reduction process were investigated by in situ hard X-ray photoelectron spectroscopy (HAXPES). Pt 5d valence band and Pt 3d, Pt 4f core HAXPES spectra of Pt nanoparticles upon H<sub>2</sub>O and O<sub>2</sub> adsorption revealed that H<sub>2</sub>O adsorption has a negligible effect on the electronic structure of Pt, while O<sub>2</sub> adsorption has a significant effect, reflecting the weak and strong chemisorption of H<sub>2</sub>O and O<sub>2</sub> on the Pt nanoparticle, respectively. Combined with ab initio theoretical calculations, it is concluded that Pt 5d states responsible for Pt–O<sub>2</sub> bonding reside within 2 eV from the Fermi level

    Distinct Electronic Structure of the Electrolyte Gate-Induced Conducting Phase in Vanadium Dioxide Revealed by High-Energy Photoelectron Spectroscopy

    No full text
    The development of new phases of matter at oxide interfaces and surfaces by extrinsic electric fields is of considerable significance both scientifically and technologically. Vanadium dioxide (VO<sub>2</sub>), a strongly correlated material, exhibits a temperature-driven metal-to-insulator transition, which is accompanied by a structural transformation from rutile (high-temperature metallic phase) to monoclinic (low-temperature insulator phase). Recently, it was discovered that a low-temperature conducting state emerges in VO<sub>2</sub> thin films upon gating with a liquid electrolyte. Using photoemission spectroscopy measurements of the core and valence band states of electrolyte-gated VO<sub>2</sub> thin films, we show that electronic features in the gate-induced conducting phase are distinct from those of the temperature-induced rutile metallic phase. Moreover, polarization-dependent measurements reveal that the V 3d orbital ordering, which is characteristic of the monoclinic insulating phase, is partially preserved in the gate-induced metallic phase, whereas the thermally induced metallic phase displays no such orbital ordering. Angle-dependent measurements show that the electronic structure of the gate-induced metallic phase persists to a depth of at least ∼40 Å, the escape depth of the high-energy photoexcited electrons used here. The distinct electronic structures of the gate-induced and thermally induced metallic phases in VO<sub>2</sub> thin films reflect the distinct mechanisms by which these states originate. The electronic characteristics of the gate-induced metallic state are consistent with the formation of oxygen vacancies from electrolyte gating

    Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se<sub>2</sub> Surfaces – Reason for Performance Leap?

    No full text
    Direct and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu­(In,Ga)­Se<sub>2</sub> (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E<sub>g</sub><sup>Surf</sup>, up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the E<sub>g</sub><sup>Surf</sup> of 1.61 eV found for an absorber treated with NaF only. Both the valence band maximum (VBM) and the conduction band minimum shift away from the Fermi level. Depth-dependent photoemission measurements reveal that the VBM decreases with increasing surface sensitivity for both samples; this effect is more pronounced for the NaF/KF-PDT CIGSe sample. The observed electronic structure changes can be linked to the recent breakthroughs in CIGSe device efficiencies

    Formation of a Kî—¸Inî—¸Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se<sub>2</sub> Thin-Film Solar Cell Absorbers

    No full text
    A NaF/KF postdeposition treatment (PDT) has recently been employed to achieve new record efficiencies of Cu­(In,Ga)­Se<sub>2</sub> (CIGSe) thin film solar cells. We have used a combination of depth-dependent soft and hard X-ray photoelectron spectroscopy as well as soft X-ray absorption and emission spectroscopy to gain detailed insight into the chemical structure of the CIGSe surface and how it is changed by different PDTs. Alkali-free CIGSe, NaF-PDT CIGSe, and NaF/KF-PDT CIGSe absorbers grown by low-temperature coevaporation have been interrogated. We find that the alkali-free and NaF-PDT CIGSe surfaces both display the well-known Cu-poor CIGSe chemical surface structure. The NaF/KF-PDT, however, leads to the formation of bilayer structure in which a KInSe species covers the CIGSe compound that in composition is identical to the chalcopyrite structure of the alkali-free and NaF-PDT absorber
    corecore