56 research outputs found

    Tumor Cell Detection among Leukocytes by Microchip

    Get PDF
    Background: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. Methods and Findings: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM) cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM) monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%), accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. Conclusion: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level

    Rapid and Highly Sensitive Detection of Malaria-Infected Erythrocytes Using a Cell Microarray Chip

    Get PDF
    BACKGROUND: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. METHODS AND FINDINGS: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. CONCLUSION: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10-100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes

    Detection Chip for Malaria

    Get PDF
    Background: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. Methods and Findings: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. Conclusion: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10–100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes

    Diagnostic Ability of Diffusion-weighted Magnetic Resonance Imaging to Discriminate Ampullary eoplasms: A Preliminary Study of 15 Cases

    Get PDF
    We assessed the diagnostic capability of diffusion-weighted magnetic resonance imaging (DWI) to predict the histological diagnosis of ampullary lesions to resolve the diagnostic uncertainty of endoscopic biopsy for ampullary neoplasms. From January 2009 to August 2011, we performed DWI using b values of 0 and 1000s/mm2 for 15 patients with a histological diagnosis of ampullary lesion (adenocarcinoma, n = 8; adenoma, n = 4; hyperplasia, n = 3). We compared the signal intensities (determined by comparing signal intensities of ampullary lesions and rating them as markedly hyperintense, hyperintense, or hypo-to-isointense relative to the duodenal wall) and the apparent diffusion coefficient (ADC, × 10-3 mm2/s) values of the ampullary lesions on DWI among the three groups based on the histological diagnosis. Values are expressed as median (range). The cancer-group lesions showed a significantly higher signal intensity than either adenoma or hyperplasia (markedly hyperintense/hyperintense/hypo-to-isointense; adenocarcinoma, 7/1/0; adenoma, 0/4/0; hyperplasia, 0/0/3; P < 0.005). The ADC values were significantly lower in adenocarcinoma at 1.46 (0.83-1.63) than in either adenoma at 2.14 (1.92-2.37) or hyperplasia at 2.06 (1.88-2.53) (P < 0.005). In addition, the ADC values in the malignant group (adenocarcinoma) were significantly lower than those in the benign groups (adenoma and hyperplasia) (P < 0.001). The findings suggested that DWI could contribute significantly to accurate preprocedural diagnosis of ampullary lesions

    EGUIDE project and treatment guidelines

    Get PDF
    Background Clinical practice guidelines for schizophrenia and major depressive disorder have been published. However, these have not had sufficient penetration in clinical settings. We developed the Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE) project as a dissemination and education programme for psychiatrists. Aims The aim of this study is to assess the effectiveness of the EGUIDE project on the subjective clinical behaviour of psychiatrists in accordance with clinical practice guidelines before and 1 and 2 years after participation in the programmes. Method A total of 607 psychiatrists participated in this study during October 2016 and March 2019. They attended both 1-day educational programmes based on the clinical practice guidelines for schizophrenia and major depressive disorder, and answered web questionnaires about their clinical behaviours before and 1 and 2 years after attending the programmes. We evaluated the changes in clinical behaviours in accordance with the clinical practice guidelines between before and 2 years after the programme. Results All of the scores for clinical behaviours in accordance with clinical practice guidelines were significantly improved after 1 and 2 years compared with before attending the programmes. There were no significant changes in any of the scores between 1 and 2 years after attending. Conclusions All clinical behaviours in accordance with clinical practice guidelines improved after attending the EGUIDE programme, and were maintained for at least 2 years. The EGUIDE project could contribute to improved guideline-based clinical behaviour among psychiatrists

    EGUIDE project and treatment guidelines

    Get PDF
    Aim: Although treatment guidelines for pharmacological therapy for schizophrenia and major depressive disorder have been issued by the Japanese Societies of Neuropsychopharmacology and Mood Disorders, these guidelines have not been well applied by psychiatrists throughout the nation. To address this issue, we developed the ‘Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE)’ integrated education programs for psychiatrists to disseminate the clinical guidelines. Additionally, we conducted a systematic efficacy evaluation of the programs. Methods: Four hundred thirteen out of 461 psychiatrists attended two 1‐day educational programs based on the treatment guidelines for schizophrenia and major depressive disorder from October 2016 to March 2018. We measured the participants’ clinical knowledge of the treatment guidelines using self‐completed questionnaires administered before and after the program to assess the effectiveness of the programs for improving knowledge. We also examined the relation between the participants’ demographics and their clinical knowledge scores. Results: The clinical knowledge scores for both guidelines were significantly improved after the program. There was no correlation between clinical knowledge and participant demographics for the program on schizophrenia; however, a weak positive correlation was found between clinical knowledge and the years of professional experience for the program on major depressive disorder. Conclusion: Our results provide evidence that educational programs on the clinical practices recommended in guidelines for schizophrenia and major depressive disorder might effectively improve participants’ clinical knowledge of the guidelines. These data are encouraging to facilitate the standardization of clinical practices for psychiatric disorders
    corecore