71 research outputs found

    Synthesizing sea surface height change including seismic waves and tsunami using a dynamic rupture scenario of anticipated Nankai trough earthquakes

    Get PDF
    The development of offshore observation technology will provide researchers with tsunami records from within an earthquake focal area, but this will create new problems. Because seismic waves coexist with tsunami inside a focal area, the seismic waves could act as noise for the tsunami signal. This study shows an efficient method to calculate sea surface height change caused by an earthquake including both seismic waves and tsunami. Simulation results indicate that seismic waves overlap with tsunami; both affect the change in sea surface height although most previous tsunami studies have neglected the contribution of seismic waves. We also numerically simulated the sea-surface displacement wavefield and hypothesized results for an anticipated rupture scenario of a huge earthquake that may possibly occur in the Nankai Trough, Japan. The synthesized record could be used to evaluate the performance of a real-time tsunami prediction method. Additionally, we discussed the similarity and difference between two kinds of tsunami waveforms: the displacement of the sea surface and the pressure change at the sea bottom. Although seismic waves appeared in both waveforms, the contribution of seismic waves was lower in the displacement at the sea surface than in the pressure change at the sea bottom

    Tumor Cell Detection among Leukocytes by Microchip

    Get PDF
    Background: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. Methods and Findings: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM) cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM) monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%), accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. Conclusion: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level

    Rapid and Highly Sensitive Detection of Malaria-Infected Erythrocytes Using a Cell Microarray Chip

    Get PDF
    BACKGROUND: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. METHODS AND FINDINGS: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. CONCLUSION: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10-100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes

    Detection Chip for Malaria

    Get PDF
    Background: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. Methods and Findings: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. Conclusion: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10–100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes

    Characterization of Swallowing Sound : Preliminary Investigation of Normal Subjects

    Get PDF
    Objective The purpose of this study was to characterize the swallowing sound and identify the process of sound generation during swallowing in young healthy adults. Methods Thirty-three healthy volunteers were enrolled and allocated into three experimental groups. In experiment 1, a microphone was attached to one of eight cervical sites in 20 subjects, participants swallowed 5 ml water, and the sound waveform was recorded. In experiment 2, 10 subjects swallowed either 0, 5, 10, or 15 ml water during audio recording. In addition, participants consumed the 5 ml bolus in two different cervical postures. In experiment 3, the sound waveform and videofluoroscopy were simultaneously recorded while the three participants consumed 5 ml iopamidol solution. The duration and peak intensity ratio of the waveform were analyzed in all experimental groups. Results The acoustic analysis of the waveforms and videofluoroscopy suggested that the swallowing sound could be divided into three periods, each associated with a stage of the swallowing movement: the oral phase comprising posterior tongue and hyoid bone movement; the pharyngeal phase comprising larynx movement, hyoid bone elevation, epiglottis closure, and passage of the bolus through the esophagus orifice; and the repositioning phase comprising the return of the hyoid bone and larynx to their resting positions, and reopening of the epiglottis. Conclusion Acoustic analysis of swallowing sounds and videofluoroscopy suggests that the swallowing sound could be divided into three periods associated with each process of the swallowing movement: the oral phase comprising the posterior movement of the tongue and hyoid bone; the pharyngeal phase comprising the laryngeal movement, hyoid bone elevation, epiglottis closure, and the bolus passage to the esophagus orifice; and the repositioning phase comprising the repositioning of the hyoid bone and larynx, and reopening of the epiglottis

    Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study

    Get PDF
    BACKGROUND: Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR). AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE). Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. METHODS: The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC) was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH). RESULTS: N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH) mRNA as a functional marker of catecholaminergic neurotransmitter production. Thus, exogenous AhR induced catecholaminergic differentiation in N2a-Rα cells. CONCLUSION: The excessive activation of AhR resulted in neural differentiation of Neuro2a cells. This result revealed that dioxins may affect the nervous system through the AhR-signaling pathway. Activated AhR may disrupt the strictly regulated brain formation with irregular differentiation occurring rather than cell death
    corecore