73 research outputs found

    Transparent and Electrically Conductive Films from Chemically Derived Graphene

    Get PDF

    Room‐Temperature Transport Properties of Graphene with Defects Derived from Oxo‐Graphene

    Get PDF
    In recent years, graphene oxide has been considered as a soluble precursor of graphene for electronic applications. However, the performance lags behind that of graphene due to lattice defects. Here, the relation between the density of defects in the range of 0.2 % and 1.5 % and the transport properties is quantitatively studied. Therefore, the related flakes of monolayers of graphene were prepared from oxo‐functionalized graphene (oxo‐G). The morphologic structure of oxo‐G was imaged by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Field‐effect mobility values were determined to range between 0.3 cm2 V−1 s−1 and 33.2 cm2 V−1 s−1, which were inversely proportional to the density of defects. These results provide the first quantitative description of the density of defects and transport properties, which plays an important role for potential applications

    Molecule signatures in photoluminescence spectra of transition metal dichalcogenides

    Get PDF
    Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It was recently predicted that a certain class of molecules exhibiting a large dipole moment can be detected through the activation of optically inaccessible (dark) excitonic states in absorption spectra of tungsten-based TMDs. In this work, we investigate the molecule signatures in photoluminescence spectra in dependence of a number of different experimentally accessible quantities, such as excitation density, temperature as well as molecular characteristics including the dipole moment and its orientation, molecule-TMD distance, molecular coverage and distribution. We show that under certain optimal conditions, even room temperature detection of molecules can be achieved

    Evidence for electron transfer between graphene and non‐covalently bound π‐systems

    Get PDF
    Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet‐chemical non‐covalent functionalization of graphene with cationic π‐systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF‐SIMS. The charged π‐systems show a p‐doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p‐doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping

    Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles

    Get PDF
    Redox switches are applied in various fields of research, including molecular lifts, electronic devices and sensors. Switching the absorbance between UV and Vis/NIR by redox processes is of interest for applications in light harvesting or biomedicine. Here, we present a series of push‐pull benzothiadiazole derivatives with high fluorescence quantum yields in solution and in the crystalline solid state. Spectroelectrochemical analysis reveals the switching of UV‐absorption in the neutral state to Vis/NIR absorption in the reduced state. We identify the partial irreversibility of the switching process, which appears to be reversible on the cyclic voltammetry timescale

    Resolution of intramolecular dipoles and push-back effect of individual molecules on a metal surface

    Full text link
    Molecules consisting of a donor and an acceptor moiety can exhibit large intrinsic dipole moments. Upon deposition on a metal surface, the dipole may be effectively screened and the charge distribution altered due to hybridization with substrate electronic states. Here, we deposit Ethyl-Diaminodicyanoquinone molecules, which exhibit a large dipole moment in gas phase, on a Au(111) surface. Employing a combination of scanning tunneling microscopy and non-contact atomic force microscopy, we find that a significant dipole moment persists in the flat-lying molecules. Density-functional theory calculations reveal that the dipole moment is even increased on the metal substrate as compared to the gas phase. We also show that the local contact potential across the molecular islands is decreased by several tens of meV with respect to the bare metal. We explain this by the induced charge-density redistribution due to the adsorbed molecules, which confine the substrate's wavefunction at the interface. Our local measurements provide direct evidence of this so-called push-back or cushion effect at the scale of individual molecules.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Physical Chemistry

    Variations of vibronic states in densely-packed structures of molecules with intramolecular dipoles

    Get PDF
    Electrostatic potentials strongly affect molecular energy levels and charge states, providing the fascinating opportunity of molecular gating. Their influence on molecular vibrations remains less explored. Here, we investigate Ethyl-Diaminodicyanoquinone molecules on a monolayer of MoS2_2 on Au(111) using scanning tunneling and atomic force microscopy and spectroscopy. These molecules exhibit a large dipole moment in gas phase, which we find to (partially) persist on the MoS2_2 monolayer. The self-assembled structures consist of chains, where the dipoles of neighboring molecules are aligned anti-parallel. Thanks to the decoupling efficiency of the molecular states from the metal by the MoS2_2 interlayer, we resolve vibronic states of the molecules, which vary in intensity depending on the molecular surrounding. We suggest that the vibrations are strongly damped by electrostatic interactions with the environment
    • 

    corecore