61 research outputs found

    Repeated bedside echocardiography in children with respiratory failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to verify the benefits and limitations of repeated bedside echocardiographic examinations in children during mechanical ventilation. For the purposes of this study, we selected the data of over a time period from 2006 to 2010.</p> <p>Methods</p> <p>A total of 235 children, average age 3.21 (SD 1.32) years were included into the study and divided into etiopathogenic groups. High-risk groups comprised: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS), return of spontaneous circulation after cardiopulmonary resuscitation (ROSC), bronchopulmonary dysplasia (BPD), cardiomyopathy (CMP) and cardiopulmonary disease (CPD). Transthoracic echocardiography was carried out during mechanical ventilation. The following data were collated for statistical evaluation: right and left ventricle myocardial performance indices (RV MPI; LV MPI), left ventricle shortening fraction (SF), cardiac output (CO), and the mitral valve ratio of peak velocity of early wave (E) to the peak velocity of active wave (A) as E/A ratio. The data was processed after a period of recovery, i.e. one hour after the introduction of invasive lines (time-1) and after 72 hours of comprehensive treatment (time-2). The overall development of parameters over time was compared within groups and between groups using the distribution-free Wilcoxons and two-way ANOVA tests.</p> <p>Results</p> <p>A total of 870 echocardiographic examinations were performed. At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values. Left ventricular load in the high-risk groups was expressed by a higher LV MPI (0.39, SD 0.13 vs. 0.29, SD 0.02; p < 0.01) and lower E/A ratio (0.95, SD 0.36 vs. 1.36, SD 0.64; p < 0.001), SF (0.37, SD 0.11 vs. 0.47, SD 0.02; p < 0.01) and CO (1.95, SD 0.37 vs. 2.94, SD 1.03; p < 0.01). At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05). Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.</p> <p>Conclusion</p> <p>Echocardiography complements standard monitoring of valuable information regarding cardiac load in real time. Chest excursion during mechanical ventilation does not reduce the quality of the acquired data.</p

    Percutaneous closure of atrial septal defects leads to normalisation of atrial and ventricular volumes

    Get PDF
    Background: Percutaneous closure of atrial septal defects (ASDs) should potentially reduce right heart volumes by removing left-to-right shunting. Due to ventricular interdependence, this may be associated with impaired left ventricular filling and potentially function. Furthermore, atrial changes post-ASD closure have been poorly understood and may be important for understanding risk of atrial arrhythmia post-ASD closure. Cardiovascular magnetic resonance (CMR) is an accurate and reproducible imaging modality for the assessment of cardiac function and volumes. We assessed cardiac volumes pre- and post-percutaneous ASD closure using CMR. Methods: Consecutive patients (n = 23) underwent CMR pre- and 6 months post-ASD closure. Steady state free precession cine CMR was performed using contiguous slices in both short and long axis views through the ASD. Data was collected for assessment of left and right atrial, ventricular end diastolic volumes (EDV) and end systolic volumes (ESV). Data is presented as mean Β± SD, volumes as mL, and paired t-testing performed between groups. Statistical significance was taken as p &lt; 0.05. Results: There was a significant reduction in right ventricular volumes at 6 months post-ASD closure (RVEDV: 208.7 Β± 76.7 vs. 140.6 Β± 60.4 mL, p &lt; 0.0001) and RVEF was significantly increased (RVEF 35.5 Β± 15.5 vs. 42.0 Β± 15.2%, p = 0.025). There was a significant increase in the left ventricular volumes (LVEDV 84.8 Β± 32.3 vs. 106.3 Β± 38.1 mL, p = 0.003 and LVESV 37.4 Β± 20.9 vs. 46.8 Β± 18.5 mL, p = 0.016). However, there was no significant difference in LVEF and LV mass post-ASD closure. There was a significant reduction in right atrial volumes at 6 months post-ASD closure (pre-closure 110.5 Β± 55.7 vs. post-closure 90.7 Β± 69.3 mL, p = 0.019). Although there was a trend to a decrease in left atrial volumes post-ASD closure, this was not statistically significant (84.5 Β± 34.8 mL to 81.8 Β± 44.2 mL, p = NS). Conclusion: ASD closure leads to normalisation of ventricular volumes and also a reduction in right atrial volume. Further follow-up is required to assess how this predicts outcomes such as risk of atrial arrhythmias after such procedures.Karen SL Teo, Benjamin K Dundon, Payman Molaee, Kerry F Williams, Angelo Carbone, Michael A Brown, Matthew I Worthley, Patrick J Disney, Prashanthan Sanders and Stephen G Worthle

    Late cardiotoxicity after low dose of anthracycline therapy for acute lymphoblastic leukemia in childhood

    Get PDF
    Introduction Late cardiotoxicity is a known complication of anthracycline therapy but the long-term effects of low cumulative doses are not well documented. We studied late cardiotoxicity in survivors of childhood acute lymphoblastic leukemia (ALL) treated with low anthracycline doses 10 to 20 years earlier. Methods Seventy-seven ALL survivors who received a cumulative anthracycline dose <250 mg/m(2) and were at least 10 years after treatment were evaluated for signs of clinical heart failure. Cardiac function was assessed by echocardiography including tissue Doppler measurements of the septal mitral annulus in 37 ALL survivors 10.6-18.3 years (median 13.3 years) after anthracycline treatment with cumulative doses of 180 (n=19) or 240 mg/m(2) (n=18). The control group consisted of 30 healthy volunteers matched for age, sex, BSA, and BMI. Results No clinical relevant cardiotoxicity was found. Left ventricular shortening fraction (SF) was significantly reduced in male ALL survivors. Three of the 19 male ALL survivors had an SF below 30%. Male ALL survivors showed a significantly lower early filling velocity to atrial contraction velocity ratio but myocardial velocity during early filling was comparable between patients and controls. ALL survivors had a significantly longer isovolumetric relaxation time (IVRT). Thirty percent of the ALL survivors have an abnormal IVRT compared to the normal range of the controls. Conclusion and implications for cancer survivors At a median of 13.3 years after exposure to cumulative doses of anthracyclines of 180 or 240 mg/m(2), no clinical relevant cardiotoxicity was found but subclinical cardiac abnormalities were present in 30% of the patients

    Persistently Elevated Right Ventricular Index of Myocardial Performance in Preterm Infants with Incipient Bronchopulmonary Dysplasia

    Get PDF
    OBJECTIVES: Elevated pulmonary vascular resistance occurs during the first days after birth in all newborn infants and persists in infants at risk for bronchopulmonary dysplasia (BPD). It is difficult to measure in a non-invasive fashion. We assessed the usefulness of the right ventricular index of myocardial performance (RIMP) to estimate pulmonary vascular resistance in very low birth weight infants. STUDY DESIGN: Prospective echocardiography on day of life (DOL) 2, 7, 14, and 28 in 121 preterm infants (median [quartiles] gestational age 28 [26]-[29] weeks, birth weight 998 [743-1225] g) of whom 36 developed BPD (oxygen supplementation at 36 postmenstrual weeks). RESULTS: RIMP derived by conventional pulsed Doppler technique was unrelated to heart rate or mean blood pressure. RIMP on DOL 2 was similar in infants who subsequently did (0.39 [0.33-0.55]) and did not develop BPD (0.39 [0.28-0.51], p = 0.467). RIMP declined steadily in non-BPD infants but not in BPD infants (DOL 7: 0.31[0.22-0.39] vs. 0.35[0.29-0.48], p = 0.014; DOL 14: 0.23[0.17-0.30] vs. 0.35[0.25-0.43], p<0.001; DOL 28: 0.21[0.15-0.28] vs. 0.31 [0.21-0.35], p = 0.015). CONCLUSIONS: In preterm infants, a decline in RIMP after birth was not observed in those with incipient BPD. The pattern of RIMP measured in preterm infants is commensurate with that of pulmonary vascular resistance

    Ejection Time-Corrected Systolic Velocity Improves Accuracy in the Evaluation of Myocardial Dysfunction: A Study in Piglets

    Get PDF
    This study aimed to assess the effect of correcting for the impact of heart rate (HR) or ejection time (ET) on myocardial velocities in the long axis in piglets undergoing hypoxia. The ability to eject a higher volume at a fixed ET is a characteristic of contractility in the heart. Systolic velocity of the atrioventricular annulus displacement is directly related to volume changes of the ventricle. Both ET and systolic velocity may be measured in a single heartbeat. In 29 neonatal pigs, systolic velocity and ET were measured with tissue Doppler techniques in the mitral valve annulus, the tricuspid valve annulus, and the septum. All ejection time corrected velocities (S(ET), meanΒ Β±Β SEM, cm/s) decreased significantly during hypoxia (Smva(ET) 15.5Β Β±Β 0.2 to 13.2Β Β±Β 0.3 (pΒ <Β 0.001), Sseptal(ET) 9.9Β Β±Β 0.1 to 7.8Β Β±Β 0.2 (pΒ <Β 0.001), Stva(ET) 12.1Β Β±Β 0.2 to 9.8Β Β±Β 0.3 (pΒ <Β 0.001)). The magnitude of change from baseline to hypoxia was greater for ejection time corrected systolic velocities than for RR-interval corrected velocities (meanΒ Β±Β SEM, cm/s); Ξ”Smva(ET) 2.3Β Β±Β 2.0 vs. Ξ”Smva(RR) 1.6Β Β±Β 1.1 (pΒ =Β 0.02), Ξ”Sseptal(ET) 2.1Β Β±Β 1.0 vs. Ξ”Sseptal(RR) 1.6Β Β±Β 1.0 (pΒ <Β 0.01), Ξ”Stva(ET) 2.3Β Β±Β 1.1 vs. Ξ”Stva(RR) 1.8Β Β±Β 1.3 (pΒ =Β 0.04). The receiver operator characteristic (ROC) showed superior performance of S(ET) compared with uncorrected velocities. The decrease in S(ET) during hypoxia was not influenced by important hemodynamic determinants. ET-corrected systolic velocity improves accuracy and decreases variability in the evaluation of systolic longitudinal function and contractility during global hypoxia in neonatal pigs compared with systolic velocity alone. It is robust toward hemodynamic changes. This novel method has the potential of becoming a useful tool in clinical practice

    Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects

    Get PDF
    A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in β‰ˆ50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders

    What is new in pediatric cardiac imaging?

    Get PDF
    Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in noninasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted

    Reference intervals for the echocardiographic measurements of the right heart in children and adolescents: a systematic review

    Get PDF
    BACKGROUND: Transthoracic echocardiography is the primary imaging modality for the diagnosis of right ventricular (RV) involvement in congenital and acquired heart diseases. There is increasing recognition of the contribution of RV dysfunction in heart diseases affecting children and adolescents, but there is insufficient information on reference intervals for the echocardiographic measurements of the right heart in children and adolescents that represent all the continental populations of the world.OBJECTIVE:The aim of this systematic review was to collate, from published studies, normative data for echocardiographic evaluation of the right heart in children and adolescents, and to identify gaps in knowledge in this field especially with respect to sub-Saharan Africans. METHODS: We performed a systematic literature search to identify studies of reference intervals for right heart measurements as determined by transthoracic echocardiography in healthy children and adolescents of school-going age. Articles were retrieved from electronic databases with a combination of search terms from the earliest date available until May 2013. RESULTS: Reference data were available for a broad range of variables. Fifty one studies out of 3096 publications were included. The sample sizes of the reference populations ranged from 13 to 2036 with ages varying from 5 to 21 years. We identified areas lacking sufficient reference data. These included reference data for determining right atrial size, tricuspid valve area, RV dimensions and areas, the RV % fractional area change, pulmonary artery pressure gradients and the right-sided haemodynamics, including the inferior vena cava dimensions and collapsibility. There were no data for sub-Saharan African children and adolescents. CONCLUSION: Reliable reference data are lacking for important echocardiographic measurements of the RV in children and adolescents, especially for sub-Saharan Africans
    • …
    corecore