36 research outputs found

    Recombinant gp160 as a therapeutic vaccine for HIV-infection: results of a large randomized, controlled trial.

    No full text
    OBJECTIVES: The primary objective of this study was to expand the safety and immunogenicity database of recombinant gp160 as a therapeutic vaccine in the treatment of HIV-infection. Preliminary efficacy data was also sought. DESIGN: This trial was a randomized, double-blind, placebo-controlled study. Two-hundred and eight volunteers, 96 therapy-naive with CD4 cell count >500x10(6)/l (group A) and 112 with CD4 cell count of 200-500x10(6)/l (group B, 51 out of 112 on treatment with one or two nucleoside analogues), received monthly injections of rgp160 IIIB vaccine or placebo for the first 6 months of the study; booster immunizations with rgp160 MN or placebo were given at times 15, 18, and 21 months. METHODS: Safety and immunogenicity data were obtained and measurements of CD4 cell count, plasma viral RNA, and proviral DNA were performed. Clinical outcome was recorded for the 24 months of study. RESULTS: The vaccine was safe and well tolerated. Despite the induction of new rgp160-specific lymphoproliferative responses and the presence of positive delayed type hypersensitivity skin tests to rgp160 at the end of the 24 month study, no effect on the natural history of HIV infection was detected. Within 24 months, AIDS-defining illnesses had occurred in 19 of the vaccinated volunteers and in 18 of the placebo recipients. Persons with higher plasma viral RNA levels and higher proviral DNA had a more rapid decline in CD4 cell count when compared to persons with lower values. Vaccine did not alter viral RNA or proviral DNA levels. CONCLUSION: There was no clinical benefit to therapeutic immunizations with rgp160, despite the induction of new lymphoproliferative responses. &nbsp

    Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes.

    No full text
    PURPOSE: To provide new information on epiretinal cell proliferation and the cells' origin in idiopathic macular holes and to overcome the effects of embedding and sectioning preparation procedures on cell-distribution patterns. METHODS: Interference and phase-contrast microscopy, immunocytochemistry, and scanning and transmission electron microscopy were performed on surgically excised whole-mounted internal limiting membrane (ILM) specimens removed from 60 eyes with idiopathic macular holes. Cell distribution and cell morphology were correlated with immunocytochemical staining characteristics. Twelve cell type-specific antibodies were used to detect glial cells, hyalocytes, retinal pigment epithelial cells, retinal ganglion cells, and immune cells. Cell viability was analyzed. RESULTS: Epiretinal cell proliferation was found in all ILM specimens, irrespective of the stage of the macular hole. Cell density showed a broad variety. Immunocytochemistry frequently revealed simultaneous expression of GFAP/CD45, GFAP/CD64, GFAP/CD68, GFAP/CRALBP, and GFAP/CD90. Some cells presented with intracellular contractile filaments (anti-αSMA); others were not immunoreactive to any antibody examined. The percentage of viable cells showed a broad variety with a mean of 73% (SD 29%). Electron microscopy demonstrated glial cells, hyalocytes, and myofibroblast-like cells. CONCLUSIONS: The presence of epiretinal cells at the ILM in all macular hole stages strongly suggests a substantial involvement of cell migration and proliferation in the course of macular hole development. Glial cells and hyalocytes play the predominant role in epiretinal cell proliferation. Given the co-expression of glial cell and hyalocyte markers, transdifferentiation of epiretinal cells needs further elucidation, especially with respect to αSMA-positive cells leading to traction at the vitreoretinal interface
    corecore