7 research outputs found

    The Stepwise Reduction of Multiyear Sea Ice Area in the Arctic Ocean Since 1980

    Get PDF
    The loss of multiyear sea ice (MYI) in the Arctic Ocean is a significant change that affects all facets of the Arctic environment. Using a Lagrangian ice age product, we examine MYI loss and quantify the annual MYI area budget from 1980 to 2021 as the balance of export, melt, and replenishment. Overall, MYI area declined at 72,500 km2 /yr; however, a majority of the loss occurred during two stepwise reductions that interrupt an otherwise balanced budget and resulted in the northward contraction of the MYI pack. First, in 1989, a change in atmospheric forcing led to a +56% anomaly in MYI export through Fram Strait. The second occurred from 2006 to 2008 with anomalously high melt (+25%) and export (+23%) coupled with low replenishment (−8%). In terms of trends, melt has increased since 1989, particularly in the Beaufort Sea, export has decreased since 2008 due to reduced MYI coverage north of Fram Strait, and replenishment has increased over the full time series due to a negative feedback that promotes seasonal ice survival at higher latitudes exposed by MYI loss. However, retention of older MYI has significantly declined, transitioning the MYI pack toward younger MYI that is less resilient than previously anticipated and could soon elicit another stepwise reduction. We speculate that future MYI loss will be driven by increased melt and reduced replenishment, both of which are enhanced with continued warming and will one day render the Arctic Ocean free of MYI, a change that will coincide with a seasonally ice-free Arctic Ocean

    Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N)

    Get PDF
    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water

    Laminar burning velocity of lean methane/air flames under pulsed microwave irradiation

    No full text
    Laminar burning velocity of lean methane/air flames exposed to pulsed microwave irradiation is determined experimentally as part of an effort to accurately quantify the enhancement resulting from exposure of the flame to pulsed microwaves. The experimental setup consists of a heat flux burner mounted in a microwave cavity, where the microwave has an average power of up to 250 W at an E-field in the range of 350–380 kV/m. Laminar burning velocities for the investigated methane/air flames increase from 1.8 to 12.7% when exposed to microwaves. The magnitude of the enhancement is dependent on pulse sequence (duration and frequency) and the strength of the electric field. From the investigated pulse sequences, and at a constant E-field and average power, the largest effect on the flame is obtained for the longest pulse, namely 50 μs. The results presented in this work are, to the knowledge of the authors, the first direct determination of laminar burning velocity on a laminar stretch-free flame exposed to pulsed microwaves

    A setup for studies of laminar flame under microwave irradiation

    No full text
    Plasma assisted combustion is a very active research field due to the potential of using the technology to improve combustion efficiency and decrease pollutant emission by stabilizing lean burning flames. It has been shown in a number of studies that a small amount of electrical energy can be deposited in the flame by applying microwaves, resulting in enhanced flame propagation and thus improved flame stabilization and delayed lean blow-out. However, the effects have not yet been properly quantified since there are significant experimental challenges related to the determination of both the laminar burning velocity and the electric field strength. In the present work, a novel setup is described, where a well-defined burner system is coupled to a microwave cavity. The burner is of heat flux type, where a flat laminar flame is stabilized on a perforated burner head. The advantage of this burner for the current use is that the method and related uncertainties are well studied and quantified, and the geometry is suitable for coupling with the microwave cavity. The setup, experimental procedure, and data analysis are described in detail in this article. Laminar burning velocity for a methane-Air flame at φ = 0.7 is determined to certify that the burner works properly in the microwave cavity. The flame is then exposed to pulsed microwaves at 1 kHz with a pulse duration of 50 μs. The laminar burning velocity at these conditions is determined to be 18.4 cm/s, which is an increase by about 12% compared to the laminar burning velocity that is measured without microwave exposure. The setup shows potential for further investigations of lean flames subjected to various microwave pulse sequences. The data are of high quality with well-defined uncertainties and are therefore suitable to use for validation of chemical kinetics models
    corecore