6 research outputs found

    Multiwavelength variability of BL Lacertae measured with high time resolution

    Full text link
    In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000–10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at Îł-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ~0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the Îł-ray and optical light curves by up to ~0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ~3 G.Accepted manuscrip

    The beamed jet and quasar core of the distant blazar 4C 71.07

    No full text
    The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a 2- yr multiwavelength campaign led by the Whole Earth Blazar Telescope (WEBT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by Îł-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands.We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density of Nbest H = 6.3 × 10 cmthrough the analysis of X-ray spectra.We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarization degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarization angle do not seem to be connected with the source activity.© 2019 The Author(s).We acknowledge financial contribution from the agreement ASI-INAF n.2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. PR and SV acknowledge contract ASI-INAF I/004/11/0. We acknowledge support by Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences via bilateral joint research project 'Study of ICRF radio-sources and fast variable astronomical objects' (head -G.Damljanovic). This work is a part of the Projects No. 176011 ('Dynamics and Kinematics of Celestial Bodies and Systems'), No. 176004 ('Stellar Physics'), and No. 176021 ('Visible and Invisible Matter in Nearby Galaxies: Theory and Observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. This research was partially supported by the Bulgarian National Science Fund of theMinistry of Education and Science under grants DN 08-1/2016, DN 18-13/2017, and KP-06-H28/3 (2018). The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology -Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik. The St Petersburg University team acknowledges support from Russian Science Foundation grant no. 17-12-01029. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217950/16. This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grant DN 08-20/2016, and by funds of the project RD-08-37/2019 of the University of Shumen. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the Unite des Communes valdotaines Mont-Emilius'. The research at the OAVdA was partially funded by two 'Research and Education' grants from Fondazione CR

    AGILE, Fermi, Swift, and GASP/WEBT multi-wavelength observations of the high-redshift blazar 4C +71.07 in outburst

    No full text
    Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), Îł-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE Îł-ray satellite during the period from the end of October to mid-November 2015, when it reached a Îł-ray flux of the order of F(E > 100 MeV)=(1.2 ± 0.3)×10 photons cm s and F(E > 100 MeV)=(3.1 ± 0.6)×10 photons cm s, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and Îł-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second Îł-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 10 erg s. Conclusions. During the most prominent Îł-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future Îł-ray satellites such as e-ASTROGAM. © ESO 2019.AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant no. I/028/12/0. SV and PR acknowledge contract ASI-INAF I/004/11/0 and INAF/IASF Palermo where most of the work was carried out. SV acknowledges financial contribution from the agreement ASI-INAF no. 2017-14-H.0. Part of this work is based on archival data, software, or online services provided by the ASI SPACE SCIENCE DATA CENTER (ASI-SSDC). SV and PR thank Leonardo Barzaghi and Sara Baitieri for useful discussions. The Osservatorio di Torino team acknowledges the financial contribution from the agreement ASI-INAF No. 2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. OMK acknowledges financial support from the Shota Rustaveli National Science Foundation under contract FR/217950/16 and grants NSFC11733001, NSFCU1531245. IA acknowledges support from a RamĂłn y Cajal grant of the Ministerio de EconomĂ­a y Compet-itividad (MINECO) of Spain. The research at the IAA–CSIC was supported in part by the MINECO through grants AYA2016–80889–P, AYA2013–40825–P, and AYA2010–14844, and by the regional government of AndalucĂ­a through grant P09–FQM–4784. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Calar Alto Observatory is jointly operated by the MPIA and the IAA-CSIC. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grant DN 08-1/2016. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. AZT-24 observations are made within an agreement among the Pulkovo, Rome, and Teramo observatories. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgaria Academy of Sciences, via bilateral joint research project “Observations of ICRF radio-sources visible in optical domain” (PI G. Damljanovic). This work is a part of Project No. 176011 (“Dynamics and kinematics of celestial bodies and systems”), No. 176004 (“Stellar physics”) and No. 176021 (“Visible and invisible matter in nearby galaxies: theory and observations”) supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. The Maidanak Observatory team acknowledges support from Uzbekistan Academy of Sciences grants No. F2-FA-F027 and F.4-16.Peer Reviewe

    Multiwavelength Variability of BL Lacertae Measured with High Time Resolution

    No full text
    © 2020. The American Astronomical Society. All rights reserved.. In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000-10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at Îł-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ∌0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the Îł-ray and optical light curves by up to ∌0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ∌3 G

    Synchrotron emission from the blazar PG 1553+113. An analysis of its flux and polarization variability

    Get PDF
    In 2015 July 29-September 1, the satellite XMM-Newton pointed at the BL Lac object PG 1553+133 six times, collecting data for 218 h. During one of these epochs, simultaneous observations by the Swift satellite were requested to compare the results of the X-ray and optical-UV instruments. Optical, near-infrared and radio monitoring was carried out by the Whole Earth Blazar Telescope (WEBT) collaboration for the whole observing season. We here present the results of the analysis of all these data, together with an investigation of the source photometric and polarimetric behaviour over the last 3 yr. The 2015 EPIC spectra show slight curvature and the corresponding light curves display fast X-ray variability with a time-scale of the order of 1 h. In contrast to previous results, during the brightest X-ray states detected in 2015 the simple log-parabolic model that best fits the XMM-Newton data also reproduces reasonably well the whole synchrotron bump, suggesting a peak in the near- UV band. We found evidence ofa wide rotation of the polarization angle in 2014, when the polarization degree was variable, but the flux remained almost constant. This is difficult to interpret with deterministic jet emission models, while it can be easily reproduced by assuming some turbulence of the magnetic field.Peer reviewe
    corecore