74 research outputs found

    Tumor-promoting functions of transforming growth factor-Ξ² in progression of cancer

    Get PDF
    Transforming growth factor-Ξ² (TGF-Ξ²) elicits both tumor-suppressive and tumor-promoting functions during cancer progression. Here, we describe the tumor-promoting functions of TGF-Ξ² and how these functions play a role in cancer progression. Normal epithelial cells undergo epithelial-mesenchymal transition (EMT) through the action of TGF-Ξ², while treatment with TGF-Ξ² and fibroblast growth factor (FGF)-2 results in transdifferentiation into activated fibroblastic cells that are highly migratory, thereby facilitating cancer invasion and metastasis. TGF-Ξ² also induces EMT in tumor cells, which can be regulated by oncogenic and anti-oncogenic signals. In addition to EMT promotion, invasion and metastasis of cancer are facilitated by TGF-Ξ² through other mechanisms, such as regulation of cell survival, angiogenesis, and vascular integrity, and interaction with the tumor microenvironment. TGF-Ξ² also plays a critical role in regulating the cancer-initiating properties of certain types of cells, including glioma-initiating cells. These findings thus may be useful for establishing treatment strategies for advanced cancer by inhibiting TGF-Ξ² signaling

    Complete hepatitis B virus genome analysis in HBsAg positive mothers and their infants with fulminant hepatitis B

    Get PDF
    BACKGROUND: After perinatal transmission of hepatitis B virus, infants of anti-HBe positive HBsAg carrier mothers may develop fulminant hepatitis B. Previously it has been suggested, that fulminant hepatitis B in adults was associated with specific mutations in the HBV-genome. The aim of this study was to investigate, whether specific viral variants are associated with fulminant hepatitis B in young infants. METHODS: The complete HBV-genomes of five mothers and their infants with fulminant hepatitis were isolated from the sera, amplified and directly sequenced. RESULTS: Between 6 and 43 base pair exchanges between the HBV genomes of the infants and their mothers were identified. The mutations spread over the entire virus genome. Nucleotide exchanges in the basic core promotor and precore region were identified in all cases. A heterogeneous virus population was detected in four mothers. CONCLUSIONS: Many new mutations were proved to emerge during fulminant hepatitis B in infants, who had been perinatally infected. HBeAg negative variants were the predominant population in all children, whereas these mutants could only be detected as subpopulations in four mothers. The data suggest that the selection of a specific HBeAg negative viral strain may be associated with the development of fulminant hepatitis B in children

    An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-Ξ² signalling

    Get PDF
    Transforming growth factor (TGF)-Ξ² induces various cellular responses principally through Smad-dependent transcriptional regulation. Activated Smad complexes cooperate with transcription factors in regulating a group of target genes. The target genes controlled by the same Smad-cofactor complexes are denoted a synexpression group. We found that an Id-like helix-loop-helix protein, human homologue of Maid (HHM), is a synexpression group-restricted regulator of TGF-Ξ² signalling. HHM suppressed TGF-Ξ²-induced growth inhibition and cell migration but not epithelial–mesenchymal transition. In addition, HHM inhibited TGF-Ξ²-induced expression of plasminogen activator inhibitor-type 1 (PAI-1), PDGF-B, and p21WAF, but not Snail. We identified a basic-helix-loop-helix protein, Olig1, as one of the Smad-binding transcription factors affected by HHM. Olig1 interacted with Smad2/3 in response to TGF-Ξ² stimulation, and was involved in transcriptional activation of PAI-1 and PDGF-B. HHM, but not Id proteins, inhibited TGF-Ξ² signalling-dependent association of Olig1 with Smad2/3 through physical interaction with Olig1. HHM thus appears to regulate a subset of TGF-Ξ² target genes including the Olig1-Smad synexpression group. HHM is the first example of a cellular response-selective regulator of TGF-Ξ² signalling with clearly determined mechanisms

    SUMOylation of DEC1 Protein Regulates Its Transcriptional Activity and Enhances Its Stability

    Get PDF
    Differentiated embryo-chondrocyte expressed gene 1 (DEC1, also known as sharp2, stra13, or BHLHB2) is a mammalian basic helix-loop-helix protein that is involved in many aspects of gene regulation through acting as a transcription factor. Changes in DEC1 expression levels have been implicated in the development of cancers. Using COS-7 cell, we showed that DEC1 can be modified by the small ubiquitin-like modifiers, SUMO1, 2 and 3. Two major SUMOylation sites (K159 and K279) were identified in the C-terminal domain of DEC1. Substitution of either K159 or K279 with arginine reduced DEC1 SUMOylation, but substitution of both K159 and K279 abolished SUMOylation, and more protein appeared to be retained in the cytoplasm compared to wild-type DEC1. The expression of DEC1 was up-regulated after serum starvation as previously reported, but at the same time, serum starvation also led to more SUMOylation of DEC1. In MCF-7 cells SUMOylation also stabilized DEC1 through inhibiting its ubiquitination. Moreover, SUMOylation of DEC1 promoted its repression of CLOCK/BMAL1-mediated transcriptional activity through recruitment of histone deacetylase1. These findings suggested that posttranslational modification of DEC1 in the form of SUMOylation may serve as a key factor that regulates the function of DEC1 in vivo

    Hypoxia and TGF-Ξ² Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival

    Activin signaling as an emerging target for therapeutic interventions

    Get PDF
    After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-Ξ² (TGF-Ξ²) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-Ξ², Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-Ξ² ligands, and control the signaling and availability of ligands
    • …
    corecore