4 research outputs found

    Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers

    Get PDF
    Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants

    Characterization of Some <i>Cichorium</i> Taxa Grown under Mediterranean Climate Using Morphological Traits and Molecular Markers

    No full text
    The verification of taxonomic identities is of the highest significance in the field of biological study and categorization. Morpho-molecular characterization can clarify uncertainties in distinguishing between taxonomic groups. In this study, we characterized five local taxa of the genus Cichorium using morphological and molecular markers for taxonomic authentication and probably future genetic improvement. The five Cichorium taxa grown under the Mediterranean climate using morphological traits and molecular markers showed variations. The examined taxa showed a widespread range of variations in leaf characteristics, i.e., shape, type, texture, margin, and apex and cypsela characteristics i.e., shape, color, and surface pattern. The phylogenetic tree categorized the Cichorium intybus var. intybus and C. intybus var. foliosum in a single group, whereas C. endivia var. endivia was grouped separately. However, C. endivia var. crispum and C. endivia subsp. pumilum were classified as a cluster. The recorded variance between classes using the molecular markers SCoT, ISSR, and RAPD was documented at 34.43%, 36.62%, and 40.34%, respectively. Authentication using molecular tools proved the usefulness of a dichotomous indented key, as revealed by morphological identification. The integrated methodology using morphological and molecular assessment could support improved verification and authentication of the various taxa of chicory. It seems likely that the Egyptian chicory belongs to C. endivia subsp. pumilum

    Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers

    No full text
    Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction&nbsp;(PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants
    corecore