10 research outputs found
Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop
Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment
Screening of gene sequence variants in Saudi Arabian children with idiopathic short stature
PurposeShort stature affects approximately 2%–3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene (SHOX) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations.MethodsWe screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated.ResultsA total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX.ConclusionIn Saudi Arabia ISS patients, rather than SHOX, it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease
<i>N</i>,<i>N</i>′-Diphenyl-1,4-phenylenediamine Antioxidant’s Potential Role in Enhancing the Pancreatic Antioxidant, Immunomodulatory, and Anti-Apoptotic Therapeutic Capabilities of Adipose-Derived Stem Cells in Type I Diabetic Rats
Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic protocol for diabetes mellitus (DM) management. The latter is attributed to their differentiation potentiality to pancreatic β-cells, angiogenesis, and immune-modulatory capabilities by releasing various paracrine factors. Interestingly, antioxidant co-administration increased the MSCs’ hypoglycemic and regenerative activities. Thus, this study aims to evaluate the therapeutic implication of type 1 DM after the co-administration of adipose tissue-derived-MSCs (AD-MSCs) and N,N′-d iphenyl-1,4-phenylenediamine (DPPD), compared to the single injection of either of them alone. In our four week long experiment, six rat groups were used as control, DPPD (250 mg/kg, i.p.), STZ-diabetic (D), D+DPPD, D+AD-MSCs (1 × 106 cell/rat, i.p.), and D+AD-MSCs+DPPD groups. Within this context, a single injection of AD-MSCs or DPPD into diabetic rats showed significant pancreatic anti-inflammatory, immunomodulation, antioxidant, and anti-apoptotic capacities, superior to AD-MSCs injection. However, AD-MSCs and DPPD co-administration into diabetic rats manifested the highest hypoglycemic and pancreatic regenerative activities in managing diabetes compared to the single shot of AD-MSCs or DPPD. These results highlight the synergetic role of DPPD as an antioxidant in enhancing AD-MSCs’ therapeutic applications
Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics
The thermal environment of a crop is one of the prime factors enhancing growth and production by regulating its physiological processes at different phenophases. To study the impact of thermal regime on spring–summer-grown black gram (variety Pant Urd 31), an experiment was conducted with different sowing dates (from the first to the third week of March), soil application of cobalt (Co) and foliar sprays of potassium (K) and boron (B) in various combinations in the split–split plot design during 2020 and 2021. The first-week-of-March-sown crop recorded more accumulated growing degree-days (GDD), photothermal units (PTU) and heliothermal units (HTU) with a longer duration than the later sown crop. Higher daily mean temperature during the reproductive stage of the later sown crop compelled it to complete the phenophases earlier than the normally sown crop, leading to yield reduction. Soil application of Co at 4 kg ha−1 and foliar sprays of K at 1.25% and B at 0.2% mitigated the adversities of excess heat irrespective of sowing dates. Variations in GDD and HTU, respectively, explained variations of about 75.8% and 87.3% in the final dry matter accumulation and of 72.9% and 84.8% in seed yield through polynomial regressions in the respective years. The maximum mean thermal use efficiency (TUE) for biomass production (0.24 g m−2/°C/day−1) and seed yield (0.11 g m−2/°C/day−1) were observed with Co soil application and combined foliar sprays of K and B due to higher dry matter production or seed yield with lower heat units accumulation in the first sown crop
Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop
Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment
Crop Diversification in Rice—Based Cropping Systems Improves the System Productivity, Profitability and Sustainability
Cropping systems in the Level Barind Tract (LBT) of Bangladesh are highly diverse, as Transplanted (T.) Aman and Boro (T. Boro) rice are a common practice in the area. Although. T. Aman is generally cultivated in the rainy (monsoon) season, but the T. Boro rice is the intensive irrigation-based winter rice with high establishment costs as a result of exhaustive tillage and high labours for transplanting of seedlings. Furthermore, pumping of a large amount of irrigation during T. Boro cultivation declines the level of groundwater, which is not environmentally friendly nor cost-effective. Therefore, the replacement of the T. Boro rice from the cropping pattern in the LBT area is the major concern of policymakers. In this context, a replicated three to four crop-based cropping systems (CS) field trial was conducted in LBT of Gaibandha, Bangladesh for consecutive three years (2018–2020) to evaluate productivity, profitability and sustainability of the multiple crop-based cropping systems. Among these CS, existing three crops based CS, CS1: T. Aman–Potato–T. Boro (introduction of the local potato in the existing cropping system) were compared with four crops based CS2: T. Aman–Potato–Cucumber–T. Aus (Introduction of high yielding potato, cucumber and T. Aus as an improved cropping system). After two years of observations, significantly higher system productivity (rice equivalent yield; REY) was found in the improved CS2 than that of existing CS1 in both years (two years’ average 49% or 11.1 t ha−1). As a result of the introduction of the high yielding potato, cucumber and T. Aus rice instead of the T. Boro rice. The CS2 was also found profitable as compared to the CS1 in terms of higher gross margin (by 74%), net return (double) and benefit-cost ratio (BCR) (1.69 vs. 1.44) due to higher gross return with slightly higher (by 28%) production cost. It is due to farmers received higher prices for potato, cucumber and two rice crops in the improved CS2 than the existing CS1. On the other hand, protein and energy output was lower (by 17% and 9%, respectively) in the CS2 than the existing CS1, due to the less content of protein and energy value in the vegetable cucumber. The results of the study revealed that crops diversification in the existing T. Boro based CS with high yielding potato, cucumber, and T. Aus rice, improved the system productivity, profitability and sustainability; which lead to improve the food security of the increasing population and also reduce the adverse effect on the environment
Influence of Nano-Chitosan Loaded with Potassium on Potassium Fractionation in Sandy Soil and Strawberry Productivity and Quality
Under sandy soil conditions, increasing the efficiency of potassium (K) fertilizers is considered to be a major limiting factor for improving the productivity and quality of fruit crops. In this context, utilizing nanotechnology has emerged as a novel technique to increase the efficiency of K applications. In our study, two field trials were conducted, in two consecutive seasons (2019/2020 and 2020/2021), to compare the effects of nano-chitosan loaded with K as a foliar treatment with those of conventional soil applications of K on plant growth, yield, and quality of strawberry plants grown in sandy soil. Strawberry plants were treated with 12 different treatments, which were replicated three times in a randomized complete block design in each growing season. Potassium sulfate (K2SO4, 48% K2O) was applied to the soil at a rate of 150.0 kg acre−1 (recommended rate, 100%). Meanwhile, the spraying of nano-chitosan loaded with K was applied at 1000 mg L−1 as a control. In addition, K2SO4 was applied either individually or in combination at the rate of 112.5 or 75.0 kg acre−1 with four nano-chitosan-K dosages (250, 500, 750, and 1000 mg L−1). After harvesting, soil samples were collected and prepared to determine K fractions. As well, plant samples were collected to determine the vegetative growth parameters and the foliage content of NPK and chlorophyll. Eventually, the yield traits and quality parameters were evaluated. A principal component analysis was conducted to determine the interrelationships of the treatments’ averages and their effects on yield components and quality traits. A combined analysis was performed for the two studied seasons and the values were the mean of six replications. The results indicated that the application of common K fertilizer (150.0 kg K2SO4 acre−1) resulted in the maximum increase in soluble and exchangeable K in the soil, which was comparable to those observed with 112.5 kg K2SO4 acre−1 + 1000 mg L−1 nano-chitosan-K and 112.5 K2SO4 acre−1 + 750 mg L−1 nano-chitosan-K. The total yield, marketable yield, and fruit firmness were all significantly increased by the latter two treatments compared to the control group. Furthermore, plots treated with 112.5 kg K2SO4 acre−1 + 1000 mg L−1 nano-chitosan-K significantly increased the total soluble solids, vitamin C levels, acidity, total sugar, and anthocyanin levels in strawberry fruits. In conclusion, under sandy soil conditions, the utilization of nanoparticles could be an indispensable tool for manipulating fertilization management when cultivating strawberries. The K status of the soil was improved by applying 75% of the recommended dose of mineral K in combination with 1000 or 750 mg L−1 of nano-chitosan-K, without compromising strawberry yield or quality
Evaluation of the Tolerance Ability of Wheat Genotypes to Drought Stress: Dissection through Culm-Reserves Contribution and Grain Filling Physiology
Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with eight wheat cultivars at the Pot House to study the grain filling and the contributions of reserves in culm, including the sheath to grain yield under drought stress. Drought stress was enforced by restricting irrigation during the grain-filling period. The plants (tillers) were harvested at anthesis, milk-ripe, and maturity. The changes in dry weights of leaves, culm with sheath, spikes, and grains; and the contribution of culm reserves to grain yield were determined. Results revealed that drought stress considerably decreased the grain filling duration by 15�24 and grain yield by 1