11 research outputs found

    Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning

    Get PDF
    Introduction: The excellent soft-tissue contrast of magnetic resonance imaging (MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for radiation therapy planning (RTP). In the last decade there has been an increasing interest in using deep-learning (DL) techniques to shorten the labor-intensive manual work and increase reproducibility. This paper focuses on the automatic segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning methods based on T2-weighted MR images.Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for segmentation of the various structures. The models were trained using public and private datasets and evaluated on private datasets only.Results and discussion: Evaluation with ground-truth contours demonstrated that the proposed method can accurately segment the majority of OARs and indicated similar or superior performance to state-of-the-art models. Furthermore, the auto-contours were visually rated by clinicians using Likert score and on average, 81% of them was found clinically acceptable

    Partial breast radiotherapy with simple teletherapy techniques

    Get PDF
    A prospective pilot study of partial breast irradiation (PBI) with conventional vs hypofractionated schedules was set out. The study aimed to determine efficacy, acute and late side effects, and the preference of photon vs electron irradiation based on individual features. Patients were enrolled according to internationally accepted guidelines on PBI. Conformal radiotherapy plans were generated with both photon and electron beams, and the preferred technique based on dose homogeneity and the radiation exposure of healthy tissues was applied. For electron dose verification, a special phantom was constructed. Patients were randomized for fractionation schedules of 25 x 2 vs 13 x 3Gy. Skin and breast changes were registered at the time of and >/=1 year after the completion of radiotherapy. Dose homogeneity was better with photons. If the tumor bed was located in the inner quadrants, electron beam gave superior results regarding conformity and sparing of organ at risk (OAR). If the tumor was situated in the lateral quadrants, conformity was better with photons. A depth of the tumor bed >/=3.0cm predicted the superiority of photon irradiation (odds ratio [OR] = 23.6, 95% CI: 5.2 to 107.5, p 90% sensitivity and specificity. After a median follow-up of 39 months, among 72 irradiated cases, 1 local relapse out of the tumor bed was detected. Acute radiodermatitis of grade I to II, hyperpigmentation, and telangiectasia developed >/=1 year after radiotherapy, exclusively after electron beam radiotherapy. The choice of electrons or photons for PBI should be based on tumor bed location; the used methods are efficient and feasible

    Boost Irradiation Integrated to Whole Brain Radiotherapy in the Management of Brain Metastases

    Get PDF
    Our retrospective analysis aimed to evaluate the clinical value of dose intensification schemes: WBRT and consecutive, delayed, or simultaneous integrated boost (SIB) in brain metastasis (BM) management. Clinical data and overall survival (OS) of 468 patients with BM from various primaries treated with 10 x 3 Gy WBRT (n = 195), WBRT+ 10 x 2 Gy boost (n = 125), or simultaneously 15 x 2.2 Gy WBRT+0.7 Gy boost (n = 148) during a 6-year period were statistically analysed. Significant difference in OS could be detected with additional boost to WBRT (3.3 versus 6.5 months) and this difference was confirmed for BMs of lung cancer and melanoma and both for oligo- and multiplex lesions. The OS was prolonged for the RPA 2 and RPA3 categories, if patients received escalated dose, 4.0 vs. 7.7 months; (p = 0.002) in class RPA2 and 2.6 vs. 4.2 months; (p < 0.0001) in the class RPA 3 respectively. The significant difference in OS was also achieved with SIB. The shortened overall treatment time of SIB with lower WBRT fraction dose exhibited survival benefit over WBRT alone, and could be applied for patients developing BM even with unfavourable prognostic factors. These results warrant for further study of this approach with dose escalation using the lately available solutions for hippocampus sparing and fractionated stereotactic irradiation. The simultaneous delivery of WBRT with reduced fraction dose and boost proved to be advantageous prolonging the OS with shortened treatment time and reduced probability for cognitive decline development even for patients with poor performance status and progressing extracranial disease

    Magnetic Resonance Imaging鈥揃ased Delineation of Organs at Risk in the Head and Neck Region

    Get PDF
    Purpose: The aim of this article is to establish a comprehensive contouring guideline for treatment planning using only magnetic resonance images through an up-to-date set of organs at risk (OARs), recommended organ boundaries, and relevant suggestions for the magnetic resonance imaging (MRI)鈥揵ased delineation of OARs in the head and neck (H&N) region. Methods and Materials: After a detailed review of the literature, MRI data were collected from the H&N region of healthy volunteers. OARs were delineated in the axial, coronal, and sagittal planes on T2-weighted sequences. Every contour defined was revised by 4 radiation oncologists and subsequently by 2 independent senior experts (H&N radiation oncologist and radiologist). After revision, the final structures were presented to the consortium partners. Results: A definitive consensus was reached after multi-institutional review. On that basis, we provided a detailed anatomic and functional description and specific MRI characteristics of the OARs. Conclusions: In the era of precision radiation therapy, the need for well-built, straightforward contouring guidelines is on the rise. Precise, uniform, delineation-based, automated OAR segmentation on MRI may lead to increased accuracy in terms of organ boundaries and analysis of dose-dependent sequelae for an adequate definition of normal tissue complication probability
    corecore