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Introduction: The excellent soft-tissue contrast of magnetic resonance imaging
(MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for
radiation therapy planning (RTP). In the last decade there has been an increasing
interest in using deep-learning (DL) techniques to shorten the labor-intensive
manual work and increase reproducibility. This paper focuses on the automatic
segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning
methods based on T2-weighted MR images.

Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for
segmentation of the various structures. The models were trained using public and
private datasets and evaluated on private datasets only.

Results and discussion: Evaluation with ground-truth contours demonstrated
that the proposed method can accurately segment the majority of OARs and
indicated similar or superior performance to state-of-the-art models.
Furthermore, the auto-contours were visually rated by clinicians using Likert
score and on average, 81% of them was found clinically acceptable.
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1 Introduction

Radiation therapy is one of the cornerstones of oncological
treatment. In the process of radiation therapy planning (RTP),
accurate definition of surrounding organs-at-risk (OARs) is
essential to limit radiation dose to these areas and enable high
dose delivery to the target tumor volume.

Magnetic resonance imaging (MRI) is increasingly used for
cancer diagnosis and treatment as it has superior soft-tissue
contrast compared to CT and can be acquired without ionizing
radiation or intravenous contrast. Despite the improved image
quality, manual segmentation of organs-at-risk is still a time-
consuming task and often suffers from large intra- and inter-
observer variability. Therefore, it is highly desired to develop an
accurate and reliable method to automatically segment organs on
MR images.

Within the past decade, convolutional neuronal networks
(CNNs) have demonstrated spectacular results for image
segmentation and accordingly, have now become the method of
choice for deep-learning (DL) based automatic OARs and tumor
segmentation with the prospect of shortening labor-intensive
manual delineation and reducing intra- and interobserver
variability [1–9]. Currently, these methods focus on one
anatomical region either head and neck or the pelvic region. In
contrast, we report results for both anatomies.

In the head-and-neck region, Dai et al. [1] have developed a
R-CNN for automatic multi-organ segmentation for brainstem,
chiasma, eyes, lenses, mandible, optic nerves, oral cavity and
parotid glands. For retinoblastoma patients [2] proposed a multi-
view CNN to delineate eye, sclera, vitreous, lens, retinal
detachment and tumor. The authors of [3] implemented three
cascaded CNNs to automatically contour parotid glands,
submandibular glands, and level II and level III lymph nodes.
An increased number of organs were segmented in head and neck
such as in recent publications [32, 34] where an nnU-Net [37]
and a full-scale attention network were used respectively. More
recently, an optic nerve segmentation was published using a 3D
U-Net [33].

In the pelvic region, Elguindi et al. [4] applied transfer learning
using DeepLabV3+ architecture to segment multiple male pelvic
structures such as bladder, rectum, urethra, rectal spacer, penile
bulb, prostate and seminal vesicles. The authors in [5] addressed
bladder, prostate, and rectum segmentation to support prostate
radiation therapy with a deep network architecture, called
STRAINet. [6] proposed a personalized auto-segmentation
framework to assist online delineation of prostate, bladder,
rectum, and femoral heads. The authors of [7] selected
DeepMedic model including a 3D CNN and a fully connected
3D conditional random field (CRF) to segment bladder, rectum
and femoral heads. Other CNN-based methods segmenting in the
pelvic region focused on the delineation of one structure, such as
prostate ([8] using MSD-Net) and bladder ([9] combining 2D CNN
with dual pathway, adaptive shape prior and CRFs). In recent papers
[35, 36], 11 and 6 organs were segmented in the pelvis region where a
3D U-Net and nnU-Net [37] were used respectively.

One of the most popular CNN architectures is the U-Net [10]
and its extension, the 3D U-Net [11]. They are widely used in several
publications for automatic OARs segmentation and demonstrated

valuable outcomes [12–19]. [12, 13] both presented a segmentation
framework that localizes and then segments 8 and 6 head-and-neck
OARs, respectively. The method proposed by [12] localizes the
OARs with a 3D Faster R-CNN and then segments them using
an attention U-Net, while the algorithm developed by [13] utilizes
standard 3D U-Nets in a cascade manner by using prior
segmentations of other nearby organs (i.e., brainstem and eyes)
to determine the bounding box of the next target OAR (i.e., optic
nerves). [14] performs segmentation on 8 structures using an
ensemble of multi-class 2D U-Nets and a graph-based
postprocessing. In [15], a two-stage deep learning based-
segmentation algorithm is proposed for 8 head OARs which uses
2D U-Nets-based localization followed by a 3D U-Net model to
finely segment the cropped smaller area. In [16], for the automatic
delineation of submandibular glands, parotid glands and level II and
level III lymph nodes, a 3D U-Net was used. In the pelvic region,
bladder was segmented with a U-Net-based method with
progressive dilated convolution in [17]. [18] performed a large-
scale study for prostatic urethra segmentation with 3D U-Net.
Lastly, the authors in [19] used a 3D U-Net with focused shape
modelling to delineate femoral heads.

The goal of this work is to provide AI-based tools to accelerate
the organ-at-risk delineation in MR images for MR-assisted or MR-
only radiation therapy planning. The main difference with respect to
other publications is the MR modality (most of the AI-based OAR
segmentation tools are available for CT only, while the number of
MR scans used for RT planning is increasing) and large number and
variety of organs in two anatomy regions (27 in head-and-neck,
10 in male pelvis—complete list of organs can be found on Figure 1)
supported by our solution (as opposed to other works which focus
on one or few organs). This way, the publication could serve as
baseline for future publications.

The presented method uses U-Net-based deep-learning models
for organ localization and segmentation (in a small sub-volume of
the input) that is more efficient than segmenting large number and
variety of organs (from large to small) in a large, high-resolution
input image. The proposed method is also specialized to organs (or
organ groups) so that it can exploit the special characteristics of the
organs (symmetric, paired, large/small, partially covered). This
allows us to support large number of structures and easily extend
the framework with new organs.

The input of the organ contouring is a standard, high-resolution
T2 scan. Using T2 images as input was motivated by the image
contrast that allows confident contouring of all types of organs,
furthermore this is a standard clinical image protocol (no special
protocol is required) that can provide useful information for tumor
as well as organ delineation.

2 Materials and methods

The presented automatic segmentation framework involved 2D
and 3D deep-learning models for organ localization and
segmentation, respectively. The models as well as certain pre-
and postprocessing steps were specifically developed for various
types of organs. The following section describes the datasets used in
this work, the general segmentation framework and its variants, the
applied pre- and postprocessing steps, the used localization and
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segmentation models, the advanced augmentations and the
evaluation techniques.

2.1 Image datasets and annotation practices

The image dataset incorporated in this work is presented for the
two anatomical sites: head-and-neck and pelvis. The collected
dataset includes publicly available dataset (referred to as public
dataset), and scans acquired inhouse or by clinical partners (referred
to as private dataset).

Within the scope of this work, T2-weighted MR images were
used. The rationale behind this choice is the superior image contrast
(that allows confident contouring of all types of organs) and the
clinical practice (standard clinical protocol, no special protocol is
required).

2.1.1 Head-and-neck
For developing organ models for the head-and-neck region, a

combination of public and private datasets was used. The first public
dataset originated from the RTMAC (Radiation Therapy—MRI
Auto-Contouring) challenge [20], referred to as AAPM dataset
[21]. The AAPM dataset (available at The Cancer Imaging
Archive (TCIA) website [22]) included 55 T2-weighted images of
the head-and-neck region with 2 mm slice thickness and 0.5 mm in-
plane pixel spacing, acquired with Siemens scanners. All scans had a
reconstructed matrix size of 512 × 512 × 120 voxels and a squared
256 mm field of view (FOV). In most of the scans, the top of the head

is missing, meaning that only the inferior part of the brain is visible
in the scans. Therefore, another public dataset was incorporated,
where the whole brain was present. This dataset is referred to as IXI
dataset [23], and included 600 MR images (T1, T2 and PD-weighted,
MRA, diffusion-weighted) from healthy subjects from which 31 T2-
weighted exams were chosen for the development dataset for brain
model training. The resolution of these scans was 256 × 256 pixels,
with varying slice number (28–130) and slice thickness (1.2–5 mm).
Only the whole brain was contoured in this dataset to provide more
data for model training in the region above the ventricles.

Our private dataset consisted of 45 T2-weighted MR scans, all of
which were acquired inhouse or by clinical partners. Out of these
scans, 24 were acquired for protocol tests on healthy volunteers, and
21 scans were from cancer patients, prospectively collected for this
project. They were scanned with GE MRI scanners using T2-
weighted fast-recovery fast spin echo (frFSE), with 0.5–1.2 mm
pixel size, 250–300 mm FOV, 240–400 mm axial coverage, and
slice thickness between 1 and 3 mm.

In the development dataset 66% of subjects were cancer patients,
while in the test set only cancer patients were included.

2.1.2 Pelvis
Organ models in the pelvic region were trained solely on private

T2-weighted FSE image data, acquired by our clinical partners. A
total of 123 exams were collected for the development and testing of
the models: 17 cases were acquired on healthy volunteers (referred to
as Volunteer set), the rest of the subjects were cancer patients,
undergoing radiation therapy. 49 of the cancer patient scans were

FIGURE 1
3D illustration of manual delineation and full list of supported organs for each region. (A,B) images show the OARs in the head-and-neck region,
while (C) presents the OARs in the pelvis region.—abbreviations: G.—glottic, SG.—supraglottic, PCM—pharyngeal constrictor muscle, Sup.—superior,
Mid.—middle, Inf.—inferior, sv.—seminal vesicles.
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collected retrospectively, these scans are referred to as Prostate
dataset. 57 of the scans were specifically collected for this project,
these are referred to as Patient dataset. Images in the Prostate dataset
were acquired with Siemens scanners and were completely uniform.
All scans had 318 × 318 × 180 matrix size, 1.5 mm slice thickness
and 447 mm field of view (FOV), with 180 mm axial coverage. The
Volunteer dataset consisted of scans with 512 × 512 axial resolution
and varying slice number (116–248), slice thickness (1–3 mm), FOV
and coverage. These scans were recorded by GE scanners. The
Patient dataset was also acquired by GE scanners with uniform
resolution of 512 × 512 × 176 voxels, with 2 mm slice thickness,
352 mm coverage and 380 or 500 mm FOV, depending on the pixel
size (0.7422 or 0.9766 mm).

In the development dataset 83% of subjects were cancer patients,
while in the test set only cancer patient images were included.

2.1.3 Data annotation
Manual labelling for all datasets was performed by medical

students trained and supervised by a qualified medical specialist
who was experienced in clinical organ delineation. Contouring
guidelines were defined based on the RTOG and DAHANCA
guidelines [24] and adapted for MR-guided contouring in a
consensus-based manner [25]. The structures (shown in
Figure 1) included in this study are essential for RTP in the
head-and-neck and pelvis regions, as irradiating them above
certain dose constraints would cause severe side effects. Some
organs, e.g., eyes were not fully visualized on all scans affecting
the number of available manual segmentations for each structure.

From our private datasets, 10 head-and-neck and 20 pelvis cases
were selected as the test dataset. The remaining cases were separated
into training and validation dataset in a ratio of 4:1. For each organ
the same train/validation/test separation was used for both 2D and
3D segmentation models.

2.2 Preprocessing

The segmentation framework started with a preprocessing step
to achieve a pre-defined volume dimensionality, resolution, and
image orientation. The steps included image standardization, and
intensity normalization. For 3D models, a bounding box cut was
inserted between these two steps. These preprocessing steps are
detailed in the following.

2.2.1 Image standardization
Its first step was to set image orientation to Right-Anterior-

Inferior (RAI) to ensure common image orientation.
For pelvis organs, slices with very low intensity (due to low

signal at the boundaries of the scan) were removed from the
inferior and superior part of the image, utilizing two-level Otsu
threshold and morphological operations to binarize the image
and generate a rough segmentation of the body. Next, the area of
the body was calculated on each binarized slice, from which the
median area was selected. All inferior slices with body’s area
smaller than 30% of the median area and superior slices with
body’s area smaller than 60% of the median area were removed.
Different thresholds were used to account for different body
diameter superiorly (i.e., abdomen) and inferiorly (i.e., legs) on

the scan. Next, the pelvic image intensity was normalized to be
between 0 and 1,000. Deharmonization (see later in Section 2.5.2)
is sensitive to image intensity and it is utilized as an offline
augmentation during training.

Then, the image was resampled to standard (organ-specific)
voxel size. After resampling, the target matrix size was achieved by
cropping or padding with zero values. The target matrix size ranged
from 128 to 512. In the transverse direction, the image was cropped
from the middle, however in the axial direction, the cropping is
defined based on organ location (e.g., cropped from inferior part of
the image in case of inferior organs). This Z direction cropping is
applied for all organs except for those organs that were segmented
only with 2Dmodels, such as body, bowel bag and whole brain. Note
that Z-direction cropping was applied only when the anatomy
coverage is greater than 250 mm in the head or 360 mm in the
pelvis scans.

2.2.2 Bounding box cut
This step was applied only in case of 3D models. For each organ,

the bounding box size was pre-defined based on the training
samples. The center of the bounding box was computed from the
output of the 2D localizer models (see in next section) during
inferencing by taking the center of mass of detected voxels. If
fused 2D is an empty mask, the result of the 2D axial localizer
model was utilized as base.

At the inference stage an important requirement for the
bounding box was that at least 75% of it shall contain image
information. This percentage was lowered to 50% in case of
larynx and spinal cord, as these structures are often located near
the bottom of the scan. If the requirement is not met, the bounding
box was not used for training or segmentation is not provided for
the case.

2.2.3 Intensity normalization
For 2D models, only a min-max intensity normalization was

applied to the whole image, such that the intensity belonging to
99.9 histogram percentile was used instead of the global intensity
maximum of the image.

For 3D models, the same histogram-based normalization was
applied with additional mean/std normalization, but only after
cutting the bounding box.

2.3 General framework and its variants

This section describes the used general framework (see in
Figure 2) and its variants.

2.3.1 General framework: 2D localization and 3D
segmentation

Our general workflow provided a 2D segmentation for each
(axial, coronal and sagittal) orientation on the low-resolution
preprocessed image, then the 2D segmentations were aggregated
(using majority vote). Based on the fused 2D segmentation the
center of the bounding box is computed (by taking the center of
mass of nonzero voxels). Using the center and the predefined organ-
specific size a 3D bounding box was cut from the high-resolution
image, and a 3D segmentation model was applied within the
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bounding box. Finally, in the postprocessing step, the result was
transferred back to the geometry of the input image.

The general framework is applied for most organs in head-and-
neck and pelvic regions (brainstem, chiasma, pituitary, oral cavity,
spinal cord, Larynx G, Larynx SG, PCM inf, PCM mid, PCM sup,

bladder, rectum, prostate, and prostate sv). In case of spinal cord, the
2D localizer models were trained to detect the superior (head-and-
neck) part of spinal cord, while the 3D segmentation model was
trained to return the whole spinal cord that was visible in the
bounding box.

FIGURE 2
The general segmentation framework demonstrated on brainstem. First, the organ is localized with axial, sagittal and coronal 2D models, then a
bounding box is cut from the 3D image based on the result of the 2D models. The 3D segmentation is applied to the bounding box only.—abbreviations:
T2w—T2-weighted, Ax—Axial, Cor—Coronal, Sag—Sagittal.

FIGURE 3
Flowchart of the segmentation involving the general framework (V0) and its variants (V1-V4). The diagram shows how the different variants are
applied based on the characteristics of the organs to be segmented.
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2.3.2 Variant #1—symmetric, paired organs
The first variant was used for symmetric, paired organs (inner

ear, eye, lacrimal gland, lens, optic nerve, parotid gland,
submandibular gland, and femoral head) with full coverage as
illustrated for the parotid glands in Figure 3. This variant allows
segmenting both left and right (L/R) structures using the same
model. The general framework was first applied to segment the left
structure. Then, the input was flipped along the X-axis and the same
model was applied to segment the right structure in the L/R flipped
input. Finally, the second result was flipped back with an additional
postprocessing step. Both localization and segmentation models
were trained using both instances of the organ (i.e., left instances
and flipped version of the right instances).

In special cases, small organs such as lens and lacrimal gland is
detected in combination with a larger organ. In this case the
localization models were trained to detect the union of one or
more small organs and a larger guiding structure. The 3D
segmentation was then performed within the combined
bounding box.

2.3.3 Variant #2—large, symmetric single organ
The second variant was used for mandible, which is a large,

symmetric, single organ with full coverage. This variant was
based on the same principles as the first one except for three
differences. First, the organ was cut into L/R parts for model
training. Second, the 3D segmentation model was trained to
return all of the organ that was visible in the bounding box
(i.e., in addition to the whole left part, the visible section of the
right part was also segmented). Third, the left and right parts
were combined into a final segmentation.

2.3.4 Variant #3—multi-label segmentation
The third variant was used for small, connected organs as

illustrated in Figure 3 for the prostate, the urethra and the penile
bulb. In this case the localization models were trained to detect the
union of the organs, while the 3D segmentation model was trained
to return multiple structures (i.e., multi-label segmentation). With
such method, small organs such as urethra and penile bulb can be
well-localized and segmented in connection with a larger structure
(prostate).

2.3.5 Variant #4—large, single organ with partial
coverage

The last variant (shown in Figure 3) was used for large, single
organs with partial coverage such as brain, body, and bowel bag
which cannot be segmented with 3D model due to their large size
and varying coverage. In this case single- or multi-slice 2D axial
model was trained to segment the organ in each slice separately.
These models produce one output mask for each slice, where the
multi-slice model requires 3 consecutive input slices (i.e., previous,
actual, next).

2.4 Localization and segmentation models

The localization of the organs, i.e., finding the center of the 3D
bounding box, was based on 2Dmodels which segment the organ on
axial, coronal, and sagittal slices. This (coarse) segmentation was

performed using 2D U-Net trained for axial, coronal, and sagittal
slices, separately. Some structures (e.g., brain, head body, pelvis
body, bowel bag) were segmented using 2D axial model only, while
most of the structures were segmented with 3D model within the
localized bounding-box.

The models were trained on an NVIDIA V100 GPU, with 16 GB
of memory.

2.4.1 2D U-Net
The 2D model’s architecture (shown in Figure 4) was a state-of-

the-art U-Net [10] with transposed convolution (instead of
upsampling layer), batch normalization and dropout. The input
size varied among organs (in the range of 128–512), but the default
was a 128 × 128 single-channel mask representing one slice of the
MR image. For bowel bag and head-and-neck and pelvis body, the
input was a 512 × 512 × 3 multi-channel matrix representing
3 consecutive slices of the MR image. The output was a single-
channel matrix.

The 2D model training was performed using a balanced set of
positive and negative image slices, except for pelvis body, where no
negative slice was used. A slice was considered positive if it contains
the organ of interest.

During the model training, Adam optimizer was used with
0.001 initial learning rate which was halved after the validation
loss has not decreased in 5 epochs. Batch size was set to 16. The
training and validation loss was calculated based on Dice similarity
coefficient (DSC). Initial filter number was set to 4 for head-and-
neck and pelvis body and whole brain and 16 for other models. The
number of epochs ranged from 30 to 75, the patience for early
stopping ranged from 10 to 30. The number of pooling layers was set
based on target matrix size, ranged from 4–6 for
128–512 matrix size.

Offline and online augmentations were applied to the training
data during training. The set of applied augmentations varied organ
by organ based on their characteristics.

The offline augmentations include organ elongation, left-right
flip, and deharmonization (c.f. Section 2.5.2). In case of paired
organs (e.g., eye), the left-right flip augmentation was used to
generate additional training sample for the left part using the
flipped image and the flipped version of the right part.

As an online augmentation, the preprocessed image was
randomly cropped to the target size (to simulate varying scan
coverage). Signal intensity augmentation was also applied using
the following function: f(x) � m*x + b, where (by default)
m ∈[0.6, 1.0) and b ∈[−0.1, 0.1) except for chiasma, where
m ∈[0.5, 1.0) and b � 0. Additionally, Gauss noise (only for head-
and-neck organs), 2D shift, 2D zoom and bias augmentation (for
pelvis organs) was applied to some organs.

2.4.2 3D U-Net
The 3D model’s architecture (shown in Figure 4) was derived

from the 2D model’s architecture such that the 2D layers were
replaced with 3D layers (convolution, pooling, transposed
convolution), and dropout was not utilized in the 3D network.
The output of the network was a 3D probability mask. In case of
some organs (urethra, penile bulb), multi-channel output was
generated, where different output channels represented the
different structures.
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The 3D model was used to segment the organ at fine resolution
inside the bounding box. The input size was organ specific. During
3D model training the center of the bounding box was shifted
randomly before cutting (as additional augmentation step) to
account for possible inaccuracies in the localization.

All single-label models were trained for 100 epochs except for
lens and lacrimal where epochs were set to 150. The batch size was
set to 6 (due to GPU memory limitations). The used optimizer was
Adam with 0.001 initial learning rate. Based on the validation loss
early stopping was applied with a patience of 30 epochs. The training
and validation loss was standard DSC for the single-label and
MCUSM (short for Multi Class Union Smoothed Minimum)
DSC for multi-label models (described in Section 2.4.2.1).

Offline and online augmentationswere also applied during 3Dmodel
training. Offline augmentations included organ elongation, L/R flip, and
deharmonization. During model training, intensity augmentation was
utilized based on a simple multiplication with number chosen randomly
between 0.5 and 1.0. In case of 3D brainstem model training, the local
variation of intensity was simulated in a few randomly selected,
consecutive slices (based on observations of patient scans).
Additionally, Gauss noise (only for head-and-neck organs), 3D shift,
3D zoom and bias augmentations (for pelvis organs) were applied.

2.4.2.1 MCUSM DSC loss
For multi-label model training, a new DSC score-based loss was

developed which shifts the focus of the model to the more difficult
(usually smaller) organs, thus enabling proper segmentation of
difficult small organs located next to a large one.

The MCUSM DSC loss was calculated as follows:

1. DSC score was calculated for each but background channel:

dicei � 2*
Xi ∩ Yi| | + ε

Xi| | + Yi| | + ε
, where i � 1, . . .N

where |X| and |Y| are the number of voxels in the automatic and
manual segmentations, respectively, |X ∩ Y| was the number of

overlapping voxels between the two segmentations andN represents
the number of channels.

2. Then, the channel-wise DSC was summed up by:

dicesum � −1
β
log ∑

i
− eβdicei( ),

where β was experimentally determined to ensure satisfactory
convergence for the difficult labels, in our case β � 4.

3. Additionally, a diceunion was calculated, where we take the union
of all channels (except the background channel) and compute
DSC score against the union ground truth labels. This allows
balancing the segmentation errors differently between the parts
of the union versus outside the union (i.e., background).

4. The last step was to sum up the DSC:

loss � − α|* dicesum + 1 − α( )* diceunion( )

where α � 0.7.

2.5 Advanced augmentations

2.5.1 Elongate organs
The elongation method (shown in Figure 5) was applied to those

organs which are anatomically separated but there was no clear boundary
between them (such as spinal cord and brainstem, optic nerves and
chiasma, parts of PCM). Themethodwas used to incorporate parts of the
other structure with a predefined length and only utilized for model
training to provide segmentation without gap between the two structures.

2.5.2 Deharmonization
The motivation of data deharmonization was to change an input

image tomimic various styles or appearances of MR images from the
unseen world. Basically, it decomposed a given image into different
images belonging to different spatial frequency bands and changed

FIGURE 4
Base architecture of the U-Nets. The number of feature maps is displayed based on the whole brain model. For multi-slice models, the input image
has 3 slices. For multi-label models, the output label number varies.
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statistics such as mean and standard deviations of each band image
and combined the modified band image into an image with a
different appearance.

L0 x( ) � I x( )
Li x( ) � Li−1 x( )*G x; σ i( )

Ii x( ) � Li−1 x( ) − Li x( ) for i � 1, . . . , B − 1

IB x( ) � LB−1 x( ) for i � B

The input image (I(x)) was decomposed into B bands Ii(x)
using the equations above, where G(x; σ i) was Gaussian
smoothing and σ i was the Gaussian sigma. After decomposing,
the intensity from each band was randomly modified by changing
the mean and standard deviation with linear scaling and
translation operations. Then, the changed energy band images
were combined using sum operation. The randomly chosen mean
and standard deviation were bounded by the statistical range
obtained from reference images.

Two examples for deharmonized image are presented in
Figure 5.

2.5.3 Bias augmentation
In some clinical MR images (scanned with 3D protocol)

significant intensity darkening can be observed in the most
inferior slices. To simulate this typical artifact seen on T2-
weighted MR scans, bias inhomogeneity augmentation was
implemented using a T2-weighted MR specific intensity non-
uniformity (INU) field published by BrainWeb [26–30]. The
INU field was estimated from real MRI scans, as a non-linear,
slowly varying field of a complex shape. Non-linear scaling was
applied to the field with an exponent chosen randomly from a
predefined range, so each time it was applied, the scans were
darkened with different intensities. An example is shown in
Figure 5.

2.6 Postprocessing

2.6.1 Organ-specific steps
The model prediction was transformed back to original

resolution and binarized using 0.5 as threshold. In case of multi-
label output, the binarization was performed for each channel. In the
next step, largest (3D) connected component search was performed
on the binary mask(s). For some organs (mandible, optic nerve, and
spinal cord) all components which were greater than a pre-defined
percent of the total volume was kept (in addition to the largest one).
Additional organ-specific steps were applied to most organs such as
2D or 3D hole filling, 2D morphological closing or 2D dilation
operation in axial plane with kernel size of 3 × 3. Finally, the
orientation was set back to original image orientation to ensure
alignment with the input MR scan. Anatomically incorrect overlaps
between neighboring organs were resolved by either assigning voxels
to the closest organ, or prioritizing structures over another (e.g.,
pituitary over brain).

2.7 Evaluation

The accuracy of the organ segmentation models was evaluated
on the private test cases in quantitative and qualitative ways. One
possible way to evaluate an MR-based organ auto-contour is to
compare it with CT-based manual- or auto-contour after
registration. However, in such case the registration can introduce
small contour mismatch that is measured as segmentation error.
Furthermore, some of the organs are more visible in MR which
allows more precise definition of the ground-truth. In an MR-only
workflow, where synthetic CT is generated from MR scan, there is
no CT available. In this work the evaluation was based on the T2-
weighted MR image without incorporating other (MR or CT) scans.

The following subsections describe the two evaluation methods.

FIGURE 5
Advanced augmentations. Left: organ elongation to ensure there is no gap between connected organs (brainstem/spinal cord and optic nerve/
chiasma); Right: bias augmentation (top), deharmonization (bottom).
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2.7.1 Qualitative evaluation
For each anatomical site, radiation oncologists from two

independent institutions reviewed the contours and evaluated
them using Likert scores.

The Likert score was defined to reflect the clinical usability of the
auto-contour as presented later. This scoring provides more
information compared to the binary (acceptable/unacceptable)
classification, where small differences can get lost in the
reviewing process. The Likert scores were defined as follows:

• Score 1: clinically unacceptable contour requiring complete
recontouring (e.g., due to wrong organ localization or severe
under- or over-segmentation)—considered as failed
segmentation.

• Score 2: clinically unacceptable contour requiring
significant correction and/or recontouring (e.g., on
several slices, which would take long time)—considered
as failed segmentation.

• Score 3: clinically unacceptable contour that can be used for
radiation treatment after some correction, which requires
significantly less time than recontouring—considered as
successful segmentation as it has clinical value.

• Score 4: clinically acceptable contour with minor, optional
corrections. This option was introduced to handle inter-
operator variability and individual preferences.

• Score 5: clinically acceptable contours, no modifications
required.

• Additionally, a contour was rated N/A when the organ was not
considered relevant from radiation therapy’s point of view.
This rating covers scenarios when the contour accuracy
cannot be assessed (due to insufficient image quality,
incomplete organ coverage) or the contour was not
considered OAR (tumor infiltration, artificial eye lens).

2.7.2 Quantitative evaluation
The auto-segmentation results were evaluated using common

quantitative metrics that are widely used in the medical image
segmentation domain: DSC, precision, recall, and Surface DSC
scores.

The Dice similarity coefficient (DSC) is a metric used to
calculate the volumetric overlap of two datasets: in this case, it
directly compares a segmentation generated by the deep-learning
model against the ground-truth manual contours.

Precision demonstrates the accuracy of the identified positive
pixels (minimizing false positives), while recall targets the ability to
capture most of the actual positive pixels of the target organ
(minimizing false negatives). These values are often used to
characterize over- or under-segmentation.

The assessment of how well the surface of the auto-contour is
aligned with that of the manual contour provides another useful
piece of information about the segmentation accuracy, this
information can be obtained using the Surface DSC metric. The
Surface DSCmeasures deviations in border placement by computing
the closest distances between all surface points of the auto
segmentation relative to the surface points of the manual
reference contour [31]. Its value indicates a percentage of the
surface points that lie within a defined tolerance.

2.8 Ethical statement

The MR scans used in this work for model training or
evaluation involve public datasets, internal volunteer scans,
clinical volunteer and patient scans which were collected with
the consent of the subjects. The head-and-neck patients were
participants in a study that was reviewed and approved by the
Medical Ethics committee of Erasmus Medical Center (Deep MR
Only, MEC 19-0805). For head-and-neck volunteer cases, the
number of the ethical protocol at Erasmus Medical Center is
2014-096. For pelvis volunteer data, the study was approved by
the Faculty of Medical Sciences Research Ethics Committee, part
of Newcastle University’s Research Ethics Committee (ethical
approval: 1878/873). For the pelvis patient cases acquired by
Siemens scanners, the radiotherapy consent included consent for
patient data to be used for research purposes and the
retrospective use of the anonymized data for this research
project was approved by Newcastle upon Tyne Hospitals NHS
Foundation Trust. For the remaining pelvis patient cases, HRA
and Health and Care ResearchWales has approved the study with
IRAS project ID 265421.

3 Results

Table 1 shows the average DSC, precision, recall, and Surface
DSC (using 1 and 2 mm tolerance) accuracy and the Likert scores
assigned by the two institutes for each organ. In general, it was
observed that high DSC scores were aligned with high clinical scores,
but there were a few exceptions observed among the models that is
discussed in more details.

There was also some difference observed in the Likert scores
assigned by the different clinical sites. Although, there was a
consensus regarding the definition of organs contours, there was
no synchronization between the sites about the exact understanding
of the Likert scores, which can be an explanation for the different
interpretation.

3.1 Head-and-neck OARs

In the head-and-neck region, the best average DSC (above 99%)
belongs to body and whole brain, which are large structures. The eye,
the brainstem, the oral cavity, the mandible, the spinal cord, and the
inner ear, which have very clear boundaries in T2w MR scans,
demonstrated high accuracy (>90%). The submandibular glands, the
supraglottic larynx, the parotid glands, which are medium sized
organs, achieved good accuracy (85%–90%). The lens, the glottic
larynx, the pituitary gland, the optic nerves, and the chiasma, which
are small or thin organs (where a few voxel difference can cause
significant decrease in DSC), show moderate accuracy (70%–90%).
The worst DSC (55%–65%) were achieved by the different parts of
the PCM and the lacrimal glands which are challenging to delineate
on T2-weighted images.

The last 2 columns of Table 1 show the average scores assigned
by 2 clinical sites for each organ. The head-and-neck cases were
reviewed by one clinician in both sites. Site 2 did not rate the whole
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brain because the organ was not fully covered by the MR scans.
According to the average scores assigned by Site 1, lens, spinal cord,
body, whole brain, eye, brainstem, inner ear showed the best
accuracy (>4). Moderate average score (3.7-4) was assigned to
parotid gland, optic nerve, mandible, pituitary, and middle PCM,
while the lowest scores (3-3.6) were assigned to chiasma,
supraglottic larynx, lacrimal gland, oral cavity, glottic larynx, and
inferior PCM, and superior PCM. The average Likert scores were in
good agreement with average DSC scores for most of the organs, but

there were a few outliers. Lens (5 vs. 86%), middle PCM (3.8 vs.
56%), lacrimal gland (3.5 vs. 55%) were rated better, while mandible
(3.9 vs. 91%), supraglottic larynx (3.5 vs. 88%), glottic larynx (3.2 vs.
80%), and oral cavity (3.4 vs. 93%) were rated lower than one would
expect from the DSC accuracy.

According to Table 1, Site 2 assigned different scores to the
head-and-neck organ contours. In general, they rated all structures
better (average of all scores 4.87) than Site 1 (average of all
scores 3.99).

TABLE 1 The results of the quantitative and qualitative evaluation. Left and right parts of organs are averaged. Qualitative scores are given in percentage.
(Prec.—precision; Rec.—recall).

Quantitative scores Qualitative scores

DSC Prec. Rec. Surface DSC—1 mm
tolerance

Surface DSC—2 mm
tolerance

Site 1 average
score

Site 2 average
score

Head-
and-neck

body 99 99 99 96 99 4,6 5

brainstem 94 92 97 93 99 4,5 4,8

chiasma 74 69 81 93 96 3,6 4,6

eye L/R 96 94 98 100 100 4,5 5

inner ear L/R 90 90 89 99 100 4,3 5

lacrimal gl. L/R 55 68 48 68 83 3,5 5

glottic larynx 80 83 78 89 96 3,2 4,7

supraglottic larynx 88 87 89 89 97 3,5 4,7

lens L/R 86 88 85 98 99 5 5

mandible 91 93 98 94 99 3,9 5

optic nerve L/R 75 78 75 91 95 4 5

oral cavity 93 93 92 81 95 3,4 4,8

parotid gl. L/R 87 84 92 80 93 4 4,9

inferior PCM 56 51 68 73 88 3,2 4,8

middle PCM 56 51 67 69 86 3,8 5

superior PCM 62 53 78 73 92 3 4,8

pituitary 75 75 79 92 97 3,8 4,6

superior spinal cord 90 89 91 94 98 4,8 5

submandibular gl. L/R 89 88 90 89 97 4,5 4,9

whole brain 99 98 99 98 99 4,6 NA

Pelvis

bladder 92 93 92 84 94 4,4 4

bowel bag 89 92 87 39 54 3,6 2,9

femoral head L/R 93 90 96 79 93 4,7 4,4

body 94 93 95 67 86 4,9 3,9

penile bulb 67 86 58 61 80 3,5 3,6

prostate 84 90 80 58 77 3,2 3,9

prostate with seminal
vesicles

81 87 77 60 77 3,3 3,7

rectum 80 84 78 63 74 3,8 3,7

urethra 39 46 43 43 58 3,7 3,3
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The average DSC was higher than 85% for 12 head OARs. For
almost all of them, also the Surface DSC metrics were high: above
88% for 1 mm tolerance and above 95% for 2 mm tolerance. The
only exception was the parotid gland where the Surface DSC was
80% for 1 mm tolerance and 93% for 2 mm tolerance.

There were few outliers among high DSC results. Despite the
88% DSC, and 89% Surface DSC (with 1 mm tolerance) and 96%
(with 2 mm tolerance), the supraglottic larynx achieved low average
score of 3.5 from Reviewer 1. Similarly, mandible was rated as only
3.9 by Reviewer 1 although its model performance was 91% of the
DSC, 94% of the Surface DSC with 1 mm tolerance and 99% with
2 mm tolerance. Finally, oral cavity got a Reviewer 1’s score of only
3.4 while reaching 93% of the DSC. However, its Surface DSC values
were lower (81% and 95% respectively).

There were 8 head models with performance lower than 80%
DSC. Seven of them were rated between 3 and 4 by Reviewer 1. The
only outlier from this group was optic nerve model which had an
average clinicians’ score of 4.5 with an average DSC of 75%. It is
noticeable that its Surface DSC values were high (91% and 95%). The
optic nerve is a very small and thin structure, so it is very vulnerable
to even small mismatches between the ground truth and auto-
segmentation which is reflected in the DSC. It can explain why it was
rated higher by clinicians despite the low DSC value.

There were a few lower-rated models with moderate DSC
performance that still had higher Surface DSC. Such examples
are: glottic larynx (80% of the DSC, 89% of the Surface DSC
with 1 mm tolerance and 96% with 2 mm tolerance), chiasma
(74% of the DSC, while 93% and 96% of the Surface DSC
respectively), pituitary (75% of the DSC, while 92% and 97% of
the Surface DSC respectively). The size (or diameter) of these organs
is very small, so small deviations of the contour may result in
significant decrease of volumetric DSC.

3.2 Pelvis OARs

In the pelvis region the highest DSC accuracy (>90%) was
achieved by the body, the femoral head, and the bladder models
which are large structures with well-defined boundaries. Bowel bag,
prostate, prostate with seminal vesicles, and rectum, which are very
heterogeneous structures, showed moderate accuracy (80%–90%).
The worst accuracy (70%>) was achieved for the penile bulb and
urethra. Due to the large scan coverage (used for pelvis scans) the top
and bottom slices were usually affected by signal loss or imaging
artifacts (e.g., wrap around). These circumstances affected the most
the accuracy of the body, the bowel bag, the rectum, the penile bulb,
and the urethra in the superior and inferior part of the image.

According to the scores of Sites 1 the body, the femoral heads
and bladder were the most accurate contours, which was also
reflected by the highest Likert scores (>4). The rectum, urethra,
bowel bag, and penile bulb hadmoderate average score (3.5-4), while
the prostate (w/o seminal vesicles) were rated the worst by the
clinician. The largest discrepancy between qualitative and
quantitative scores was observed for urethra (3.7 vs. 37%) bowel
bag (3.6 vs. 89%) and prostate (3.2 vs. 84%). The urethra is a thin
structure where some voxel difference from ground-truth can result
significant decrease of DSC score. In contrast, the bowel bag is a
large structure that may require significant manual adjustments

even if the DSC score is relatively high. The prostate is a special
structure in the sense that it is often also the treatment target (not
organ-at-risk) which requires very precise delineation, so small
inaccuracy can result in lower score.

There were some differences between the Likert scores assigned
by the 2 sites to the pelvic structures. The average of all scores was
very close (3.9 for Site 1 and 3.7 for Site 2), but there were significant
differences in case of a few structures. The body and bowel bag were
rated better in Site 1 (4.9, 3.6) than in Site 2 (3.9, 2.9) because Site
2 was more critical with segmentation inaccuracies in the top and
bottom slices of the input scans, while Site 1 considered the contours
on those slices less relevant. There was also large difference between
the scores of the prostate that was better rated by Site 2 (3.9 vs. 3.2).

Three pelvis models (bladder, femoral head, and body) reached
the average DSC above 90% which was in alignment with clinicians’
average scores that varied from 4.2 to 4.5. Except for the body, these
organs had the highest values of the Surface DSC with 1 mm
tolerance (79%–84%) as well as with 2 mm tolerance (93%–94%).
In case of the body, the Surface DSC values are much lower (67% and
86% respectively). This is a common observation for pelvis organ
auto-segmentation generated by 2D deep learning models. Due to
the 2D approach the body and the bowel bag were segmented at the
topmost slices of the pelvis scan, which are affected by various
artefacts (respiratory, wrap-around) causing the model to perform
suboptimal. These organs are larger compared to others, therefore
low Surface DSC results suggest that there was a systematic under-
or over-segmentation; however, the average clinicians’ score for the
body shows that this error does not affect the auto-segmentation too
significantly, as it usually requires either none or only minor
correction.

For the remaining six pelvis organs, there was no clear
correlation between quantitative and qualitative metrics. Urethra
and penile bulb had the lowest evaluation metric results (DSC of
39% and 67%, Surface DSC with 1 mm tolerance of 43% and 61%
and with 2 mm tolerance of 58% and 80% respectively) and were
rated with average of 3.5 and 3.6 by clinicians. The urethra is a thin
organ, so a visually good segmentation may have small overlap
(i.e., DSC) with the ground-truth. The penile bulb is also a small
structure (visible on few slices only) accordingly small inaccuracies
translate in low DSC value. Organs like prostate, rectum, and bowel
bag had higher DSC (80%–89%), but their Likert scores were
relatively low (3.2–3.7). It is remarkable though that their Surface
DSC values were substantially lower than better-rated organs, which
indicates need for more adjustments. It highlights the importance of
taking into consideration both DSC and Surface DSC metrics when
evaluating medical auto-segmentations.

3.3 Common segmentation errors

Table 2 demonstrates the common segmentation errors
observed during the qualitative evaluation. An error was
considered common, when it was observed in more than half of
the reviewed contours. Those head-and-neck organs which are not
listed in the table, had no common segmentation errors reported by
the reviewers.

A typical error of the 3D segmentation model was the
inaccurate detection of the non-visible boundaries which are
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found at the edge of continuous anatomy structures (e.g.,
brainstem/spinal cord, PCM inf./mid./sup., larynx glottic/
supraglottic). These boundaries are defined by nearby anatomy
landmarks, such as the odontoid process for brainstem, or the
arytenoid cartilages, the hyoid bone, and the second cervical
vertebrae for PCM and larynx. In such cases the connected
structures are typically correctly segmented, but the boundary
between the connected parts was not found at the expected axial
slice because there was no visible boundary that could have been
learned by the 3D segmentation model.

Another common error was the inaccuracy at the top- or the
bottom-most slice of the organ, especially where the structure
boundary is defined by a straight plane (e.g., bottom of the
femoral heads). This is also a consequence of using 3D model
that results in a smooth 3D contour with small deviations. These
deviations become apparent when the result is evaluated in 2D axial
slices in form of smaller fragmented islands which were typically
considered false positive by the clinicians. Organ specific
segmentation errors are displayed on Figure 6; Figure 7.

4 Discussion

This work presents a comprehensive DL-based framework for
OAR localization and segmentation forMR-based radiation therapy.
The proposed method was evaluated for head-and-neck and pelvic
anatomy in both qualitative and quantitative ways. According to the
qualitative evaluation of the head-and-neck segmentation, the
clinician from Site 1 found 72% of the auto-contours acceptable
with no or minor corrections, and Site 2 scored all contours
acceptable. The qualitative evaluation of the pelvis segmentation

showed that both sites found similar percentage of the organ
contours clinically acceptable (73% and 69%). These results
indicate that the presented method could make impact to the
clinical workflow of MR-based radiation therapy planning,
following further evaluation in larger and more heterogeneous
patient cohorts.

To enable comparison with the prior-art, the auto-contours were
compared with ground-truth using standard quantitative measures.
Table 3; Table 4 show the comparison between DSC scores obtained
by the proposed method and the current state-of-the-arts for head-
and-neck and pelvis organs, respectively. The best accuracy for each
organ is highlighted with bold font style. As one can see in Table 3,
7 out of 20 head-and-neck organ models produced the best results
compared to the reported state-of-the-art. Additionally, the eye
model’s performance was just slightly worse (only 1% difference)
compared to the best state-of-the-art DSC. The remaining organs’
model either performed in themid-range of the collected DSC scores
(for 5 out of 20 organs) or have not been targeted by other MR-only
studies (for 7 out of 20).

According to Table 4 the pelvis segmentation performance was
lower than head-and-neck as none of them resulted in best outcome
compared to the prior-art. For pelvis body and bowel bag, based on
our extensive literature review, studies have not yet reported any
results so far. Three of the 9 organ models were in the middle range
of the prior art. The DSC accuracy of the union of prostate and
seminal vesicles was reported by only one publication which
provided results close to ours. The remaining models’
performance was below currently reported state-of-the-art results.
This can be due to the fact that the input scan of this study has larger
(40–50 cm) FOV which allows less precise segmentation due to
lower resolution.

TABLE 2 Common segmentation errors observed during qualitative evaluation.

Under-segmentation Over-segmentation Either Both

chiasma superior border

lacrimal glands (L/R) inferior part

glottic larynx inferior part

supraglottic larynx triangular shape of the organ inferior border

mandible arch of the organ

optic nerve (L) middle part

oral cavity superior part

PCM (inf./mid./sup.) anatomical border

bladder superior part

bowel bag partially including other organs

femoral head (L/R) inferior part

body inferior and/or superior part

penile bulb “irregular contour" inferior part

prostate lateral part

rectum inferior and/or superior part

urethra prostatic part
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Regarding the comparison with the prior art, it is important to
mention that majority of the published methods were designed for
segmenting one or just a few organs. Furthermore, the MR modality
shows more variation in image quality (compared to the more
standardized CT), which makes it challenging to compare
different works. The definition of organs may also vary across
publications. For example, femoral head may involve only the
spherical part, but the proposed method segments significant part
of the bone.

The mean inference time of the segmentation framework
(including all organs) was about 21 min for a head-and-neck,
and 6 min for pelvis using a normal GPU. Although, there is a
plan to further optimize the workflow in the future, it would still

accelerate the labor-intensive delineation process in RTP that can
take several hours for one case.

The segmentation pipeline is implemented in an end-to-end way
in a sense that the input is the MR scan and the output is the set of
segmented organ contours. If an error occurs during the
segmentation of a structure (localization fails or segmentation
returns empty mask) no output is generated for the given
structure which does not affect the segmentation of other
structures. However, while we recognize that multi-task models
are the future of deep-learning-based segmentation, today some
practical limitations still hold us back from training and inferencing
such large models. With the currently-available GPU tools it is
challenging to train large, multi-task models which take a high-

FIGURE 6
Worst (left) and best (right) results in head-and-neck based on qualitative score (green—manual segmentation, red—auto-segmentation)—from left
to right and top to bottom: (A) head body, (B) brainstem, (C) chiasma, (D) eye, (E) inner ear, (F) lacrimal gland, (G) glottic larynx, (H) supraglottic larynx, (I)
lens, (J)mandible, (K) optic nerve, (L) oral cavity, (M) parotid gland, (N) inferior PCM, (O)middle PC, (P) superior PCM, (Q) pituitary, (R) superior spinal cord,
(S) submandibular gland, (T) whole brain.
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resolution 3-dimensional scan as input and segment large number
and variety of structures (large-small, round-flat, thin-thick) with
good accuracy. From AI model maintenance’s point of view, it is
more efficient to develop models which segment only one or just a
few structures. This way there is no need to retrain a large model
when the accuracy of a few organs shall be improved, while others
are up to standard.

One limitation of this work is that the organs with tumorous
growth and healthy organs were not separately evaluated, which
impacted both the model performance (due to distorted organ
boundary) and the given qualitative scores (as target needs to be
highly precisely contoured). The other limitation is that the
evaluation was done on a small dataset, which might not show
the possible variety of patient population or MR scan’s quality. Due
to the lack of data, the performance of the presented AI models was
not demonstrated on special cases (hip implant, prostate seed, rectal
spacer, etc.). This limitation can be reduced in future work by
collecting special cases for the evaluation and the training of the AI
models, which is challenging due to the low number of such cases the
large variety of the applied techniques observed in the clinical
practice. However, the proposed method still has clinical
relevance, as most of the organs contoured as OARs in the
clinical practice are normal structures, without any special
characteristic.

4.1 Future work

The future work primarily consists of improving the segmentation
accuracy by adding more training cases with special focus on the
failure modes. Extending the scope to follow-up and post-OP scans

shall be considered, as the analysis of the segmentation accuracy in
presence of contour changes during the treatment is highly relevant.
However, it does require extensive clinical data-collection, so before
the final decision is made on whether extending the scope would
results in more clinical relevance, the current segmentation method
needs to be evaluated on a large variety of cases with these aspects in
mind. Additionally, while the image of choice in this work was T2-
weighted MR, we acknowledge that multi-spectral or multi-
parametric MR imaging can provide additional information for
precise delineation of the lesions as well as the organs. In long
term, the automated organ segmentation tools shall support
various types of imaging protocols, and our intention is to adapt
the presented AImodels to the frequently-used imaging protocols and
generalize them to work in a protocol-independent way. The
presented approach shall be extended to other anatomical sites
(such as brain or abdomen).

Another area for enhancement is the performance time, as it can
also be improved from the current measured baseline.

Moreover, a more extensive evaluation shall be performed
including more clinical sites to demonstrate the robustness of the
DL models. This work focuses on the organ contouring in MR
scans, and as such, other steps of the MR-assisted or MR-only
radiation therapy planning, such as MR image acquisition, MR to
CT registration, target delineation, dose planning, or contour
adaptation are currently not addressed. In future work, we are
going to evaluate the presented auto-segmentation tools as part of
the whole clinical pipeline. We also acknowledge the need for an
extensive evaluation to prove the clinical usability of MR-assisted
(when the contoured MR is registered to planning CT) as well as
the MR-only (when the contoured MR is used with MR-based
synthetic CT) radiation therapy planning workflows to

FIGURE 7
Worst (left) and best (right) results in male pelvis (green—manual segmentation, red—auto-segmentation)—from left to right and top to bottom: (A)
bowel bag, (B) femoral head, (C) pelvis body, (D) penile bulb, (E) prostate and seminal vesicles, (F) rectum, (G) urethra, (H) bladder.
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TABLE 3 DSC (%) comparison of the proposed and prior-art methods for head-and-neck OARS. The accuracy of the proposed method was reported on a different
dataset compared to the literature.

2019 2020 2021 2022 2023

[13] [14] [12] [3] [2] [15] [1] [16] [32] [33] [34] This work

Body 99

brain 97 98 91 99

brainstem 91 89 92 90 89 86 88 94

chiasma 71 67 59 52 61 44 65 74

eye 94 90 97 94 90 89 96

glottic larynx 75 80

inner ear 90

lacrimal gl. 59 50 63 55

lens 59 94 81 56 67 86

mandible 85 82 93 91

optic nerve 80 67 73 37 68 72 84 73 75

oral cavity 89 92 90 93

parotid gl. 82 86 86 89 86 89 87

inferior PCM 56

middle PCM 56

superior PCM 62

pituitary 58 73 45 70 75

superior spinal cord 82 90

supraglottic larynx 81 88

submandibular gl. 83 88 84 83 89

Highest accuracies are highlighed in bold.

TABLE 4 DSC (%) comparison of the proposed and state-of-the-art methods formale pelvis OARs. The accuracy of the proposedmethodwas reported on a different
dataset compared to the literature.

2018 2019 2020 2022 2023

[17] [4] [9] [5] [7] [18] [19] [8] [6] [35] [36] This work

bladder 84 93 98 97 96 91 97 92

body 94

bowel bag 89

femoral head 97 97 91 93

penile bulb 74 73 92 67

prostate 91 92 79 84

prostate and seminal vesicles 83 81

rectum 82 91 88 82 94 80

urethra 69 61 39

Highest accuracies are highlighed in bold.
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demonstrate the accuracy with respect to the standard CT-based
approach (when both delineation and dose optimization is
performed on CT).

Apart from OARs, the target delineation is an important
problem that needs addressing by itself or in connection with
organ delineation. Similarly, classifying lesions as benign or
malignant based on the auto-contoured target would be an
interesting topic. This is why our plan includes expanding the
MR segmentation scope with target-delineation using DL solutions.
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