6 research outputs found

    Isolation and Characterization of Bacteria that Produce Polyhydroxybutyrate Depolymerases

    No full text
    Isolation of environmental bacterial strains with diverse metabolic properties such as antibiotic production, sulfide oxidation, and the ability to use different nutrient sources is a common undergraduate lab experience. This article describes a useful protocol for the detection and isolation of bacteria that can degrade the common carbon storage biopolymer poly (3-hydroxybutyrate) (PHB).  The procedure utilizes a low nutrient media supplemented with insoluble PHB that allows for the easy, visible detection of strains that produce extracellular PHB degrading enzymes. This method can be used to determine the percent of culturable bacteria from various environments that can degrade PHB. Further, PHB degrading exoenzyme activity can be monitored from pure cultures by: (1) Growing cells in broth, (2) inducing with PHB, and (3) measuring activity of supernatant with a UV/Vis spectrophotometer. The enzymatic breakdown of PHB presents an opportunity to expose students to the concept of using biodegradable plastics as a solution to the global plastic waste problem

    Heterogeneity in NECTIN4 Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin.

    No full text
    PurposeEnfortumab vedotin (EV) is an antibody-drug conjugate (ADC) targeting NECTIN4 (encoded by the PVRL4/NECTIN4 gene) approved for treatment-refractory metastatic urothelial cancer. Factors that mediate sensitivity or resistance to EV are unknown. In this study, we sought to (i) examine heterogeneity of NECTIN4 gene expression across molecular subtypes of bladder cancer and (ii) determine whether NECTIN4 expression mediates EV sensitivity or resistance.Experimental designMolecular subtyping and NECTIN4 expression data from seven muscle-invasive bladder cancer clinical cohorts (n = 1,915 total specimens) were used to assess NECTIN4 expression across molecular subtypes. The outcome of the transcriptomic analysis was relative NECTIN4 expression in the consensus molecular subtypes of bladder cancer. Expression of NECTIN4 was validated in bladder cancer cell lines. NECTIN4 was stably overexpressed or knocked down in basal and luminal bladder cancer cell lines and EV drug sensitivity assays were performed, as measured by cell proliferation and clonogenic assays.ResultsNECTIN4 expression is heterogenous across molecular subtypes of bladder cancer and significantly enriched in luminal subtypes. NECTIN4 expression is positively correlated with luminal markers GATA3, FOXA1, and PPARG across all cohorts. NECTIN4 expression is both necessary and sufficient for EV sensitivity in luminal and basal subtypes of urothelial bladder cancer cells. Downregulation of NECTIN4 leads to EV resistance.ConclusionsSensitivity to EV is mediated by expression of NECTIN4, which is enriched in luminal subtypes of bladder cancer. These findings may have implications for biomarker development, patient selection, and the inclusion of molecular subtyping in ongoing and future EV clinical trials.See related commentary by Teo and Rosenberg, p. 4950

    An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer

    No full text
    Genomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data reveals known prostate cancer specific driver genes, such as AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome

    Molecular Imaging of Prostate Cancer Targeting CD46 Using ImmunoPET

    No full text
    PurposeWe recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models.Experimental design[89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545.Results[89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection).Conclusions[89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer
    corecore