385 research outputs found

    PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10 147 porcine full-length cDNA sequences

    Get PDF
    We formerly released the porcine expressed sequence tag (EST) database Pig EST Data Explorer (PEDE; ), which comprised 68 076 high-quality ESTs obtained by using full-length-enriched cDNA libraries derived from seven tissues. We have added eight tissues and cell types to the EST analysis and have integrated 94 555 additional high-quality ESTs into the database. We also fully sequenced the inserts of 10 147 of the cDNA clones that had undergone EST analysis; the sequences and annotation of the cDNA clones were stored in the database. Further, we constructed an interface that can be used to perform various searches in the database. The PEDE database is the primary resource of expressed pig genes that are supported by full-length cDNA sequences. This resource not only enables us to pick cDNA clones of interest for a particular analysis, but it also confirms and thus contributes to the sequencing integrity of the pig genome, which is now being compiled by an international consortium (). PEDE has therefore evolved into what we now call ‘Pig Expression Data Explorer’

    Urinary Fetuin-A Is a Novel Marker for Diabetic Nephropathy in Type 2 Diabetes Identified by Lectin Microarray

    Get PDF
    We analyzed the urine samples of patients with type 2 diabetes at various stages of diabetic nephropathy by lectin microarray to identify a biomarker to predict the progression of diabetic nephropathy. Japanese patients with type 2 diabetes at various stages of nephropathy were enrolled and we performed lectin microarray analyses (n = 17) and measured urinary excretion of fetuin-A (n = 85). The increased signals of urine samples were observed in Sia alpha 2-6Gal/GalNAc-binding lectins (SNA, SSA, TJA-I) during the progression of diabetic nephropathy. We next isolated sialylated glycoproteins by using SSA-lectin affinity chromatography and identified fetuin-A by liquid chromatography-tandem mass spectrometer. Urinary excretion of fetuin-A significantly increased during the progression of albuminuria (A1, 0.40 +/- 0.43; A2, 0.60 +/- 0.53; A3 1.57 +/- 1.13 ng/gCr; p = 7.29x10(-8)) and of GFR stages (G1, 0.39 +/- 0.39; G2, 0.49 +/- 0.45; G3, 1.25 +/- 1.18; G4, 1.34 +/- 0.80 ng/gCr; p = 3.89x10(-4)). Multivariate logistic regression analysis was employed to assess fetuin-A as a risk for diabetic nephropathy with microalbuminuria or GFR<60 mL/min. Fetuin-A is demonstrated as a risk factor for both microalbuminuria and reduction of GFR in diabetic nephropathy with the odds ratio of 4.721 (1.881-11.844) and 3.739 (1.785-7.841), respectively. Collectively, the glycan profiling analysis is useful method to identify the urine biomarkers and fetuin-A is a candidate to predict the progression of diabetic nephropathy

    Nuclear Hormone Receptor Expression in Mouse Kidney and Renal Cell Lines

    Get PDF
    Nuclear hormone receptors (NHRs) are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ) and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN), the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m), and cell lines of mesangial (MES13), podocyte (MPC), proximal tubular epithelial (mProx24) and collecting duct (mIMCD3) origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77), nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARΎ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN

    Pemt deficiency ameliorates endoplasmic reticulum stress in diabetic nephropathy

    Get PDF
    Phosphatidylethanolamine N-methyltransferase (Pemt) catalyzes the methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) mainly in the liver. Under an obese state, the upregulation of Pemt induces endoplasmic reticulum (ER) stress by increasing the PC/PE ratio in the liver. We targeted the Pemt gene in mice to explore the therapeutic impact of Pemt on the progression of diabetic nephropathy and diabetes, which was induced by the injection of streptozotocin (STZ). Although the blood glucose levels were similar in STZ-induced diabetic Pemt+/+ and Pemt−/−mice, the glomerular hypertrophy and albuminuria in Pemt−/− mice were significantly reduced. Pemt deficiency reduced the intraglomerular F4/80-positive macrophages, hydroethidine fluorescence, tubulointerstitial fibrosis and tubular atrophy. The expression of glucose-regulated protein-78 (GRP78) was enriched in the renal tubular cells in STZ-induced diabetic mice, and this was ameliorated by Pemt deficiency. In mProx24 renal proximal tubular cells, the treatment with ER-stress inducers, tunicamycin and thapsigargin, increased the expression of GRP78, which was reduced by transfection of a shRNA lentivirus for Pemt (shRNA-Pemt). The number of apoptotic cells in the renal tubules was significantly reduced in Pemt−/− diabetic mice, and shRNA-Pemt upregulated the phosphorylation of Akt and decreased the cleavage of caspase 3 and 7 in mProx24 cells. Taken together, these findings indicate that the inhibition of Pemt activity ameliorates the ER stress associated with diabetic nephropathy in a model of type 1 diabetes and corrects the functions of the three major pathways downstream of ER stress, i.e. oxidative stress, inflammation and apoptosis

    Guidelines for the proper use of etanercept in Japan

    Get PDF
    Application of biological agents targeting inflammatory cytokines such as tumor necrosis factor-α (TNF-α) dramatically caused a paradigm shift in the treatment of rheumatoid arthritis (RA). Infliximab, a chimeric anti-TNF-α monoclonal antibody, has initially been introduced to Japan in 2003 and shown to be dramatically effective in alleviating arthritis refractory to conventional treatment. However, serious adverse events such as bacterial pneumonia, tuberculosis, and Pneumocystis jiroveci pneumonia were reported to be in relatively high incidence; i.e., 2%, 0.3%, and 0.4%, respectively, in a strict postmarketing surveillance of an initial 4000 cases in Japan. Etancercept, a recombinant chimeric protein consisting of p75 TNF-α receptor and human IgG, was subsequently introduced to Japan in March of 2005. We therefore drew up treatment guidelines for the use of etanercept to avoid potential serous adverse events, since only approximately 150 cases have been included in the clinical study of etanercept in Japan. The guidelines were initially designed by the principal investigators (N.M, T.T., K.E.) of rheumatoid arthritis study groups of the Ministry of Health, Labor and Welfare (MHLW), Japan, and finally approved by the board of directors of the Japan College of Rheumatology. The MHLW assigned a duty to the pharmaceutical companies to perform a complete postmarketing surveillance of an initial 3000 cases to explore any adverse events, and this was performed according to the treatment guidelines shown in this article

    Convolutional neural network can recognize drug resistance of single cancer cells

    Get PDF
    It is known that single or isolated tumor cells enter cancer patients' circulatory systems. These circulating tumor cells (CTCs) are thought to be an effective tool for diagnosing cancer malignancy. However, handling CTC samples and evaluating CTC sequence analysis results are challenging. Recently, the convolutional neural network (CNN) model, a type of deep learning model, has been increasingly adopted for medical image analyses. However, it is controversial whether cell characteristics can be identified at the single-cell level by using machine learning methods. This study intends to verify whether an AI system could classify the sensitivity of anticancer drugs, based on cell morphology during culture. We constructed a CNN based on the VGG16 model that could predict the efficiency of antitumor drugs at the single-cell level. The machine learning revealed that our model could identify the effects of antitumor drugs with ~0.80 accuracies. Our results show that, in the future, realizing precision medicine to identify effective antitumor drugs for individual patients may be possible by extracting CTCs from blood and performing classification by using an AI system

    EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma

    Get PDF
    Objectives: Cetuximab (Cmab) is a molecularly targeted monoclonal antibody drug for head and neck squamous cell carcinoma (HNSC), although cetuximab resistance is a serious challenge. Epithelial cell adhesion molecule (EpCAM) is an established marker for many epithelial tumors, while the soluble EpCAM extracellular domain (EpEX) functions as a ligand for epidermal growth factor receptor (EGFR). We investigated the expression of EpCAM in HNSC, its involvement in Cmab action, and the mechanism by which soluble EpEX activated EGFR and played key roles in Cmab resistance. Materials and methods: We first examined EPCAM expression in HNSCs and its clinical significance by searching gene expression array databases. We then examined the effects of soluble EpEX and Cmab on intracellular signaling and Cmab efficacy in HNSC cell lines (HSC-3 and SAS). Results: EPCAM expression was found to be enhanced in HNSC tumor tissues compared to normal tissues, and the enhancement was correlated with stage progression and prognosis. Soluble EpEX activated the EGFR-ERK signaling pathway and nuclear translocation of EpCAM intracellular domains (EpICDs) in HNSC cells. EpEX resisted the antitumor effect of Cmab in an EGFR expression-dependent manner. Conclusion: Soluble EpEX activates EGFR to increase Cmab resistance in HNSC cells. The EpEX-activated Cmab resistance in HNSC is potentially mediated by the EGFR-ERK signaling pathway and the EpCAM cleavage-induced nuclear translocation of EpICD. High expression and cleavage of EpCAM are potential biomarkers for predicting the clinical efficacy and resistance to Cmab

    Urinary angiotensinogen is a marker for tubular injuries in patients with type 2 diabetes

    Get PDF
    Purpose: Urinary angiotensinogen has been reported as a marker for the activation of intrarenal renin–angiotensin system (RAS) in various kidney diseases. To investigate the importance of urinary angiotensinogen in diabetic nephropathy, we compared the urinary levels of angiotensinogen, albumin, and α1-microglobulin. Materials and methods: Japanese patients with type 2 diabetes at various stages of nephropathy (n=85) were enrolled, and we measured albumin/creatinine ratio (ACR) and urinary excretion of angiotensinogen and α1-microglobulin. We also compared the clinical data of the patients treated with or without angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors (RAS inhibitors [+], n=51; RAS inhibitors [−], n=34). Results: Urinary angiotensinogen levels positively correlated with ACR (r =0.367, P=3.84×10-4) and urinary α1-microglobulin (r=0.734, P=1.32 × 10-15), while they negatively correlated with estimated glomerular filtration ratio (eGFR) (r=−0.350, P=1.02 × 10-3) and high-density lipoprotein cholesterol (r=−0.216, P=0.049). Multiple regression analysis was carried out to predict urinary angiotensinogen levels by employing eGFR, ACR, and urinary α1-microglobulin as independent variables; only urinary α1-microglobulin entered the regression equation at a significant level. Although ACR was higher in the RAS inhibitors (+) group, urinary α1-microglobulin and angiotensinogen did not show significant increase in the RAS inhibitors (+) group. Conclusion: Urinary angiotensinogen is well correlated with urinary α1-microglobulin and reflected the tubular injuries which may be associated with the intrarenal RAS activation in patients with type 2 diabetes

    Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study

    Get PDF
    Background: Glutathione plays crucial roles in the detoxification and antioxidant systems of cells and has been used to treat acute poisoning and chronic liver diseases by intravenous injection. This is a first study examining the therapeutic effects of oral administration of glutathione in patients with nonalcoholic fatty liver disease (NAFLD). Methods: The study was an open label, single arm, multicenter, pilot trial. Thirty-four NAFLD patients diagnosed using ultrasonography were prospectively evaluated. All patients first underwent intervention to improve their lifestyle habits (diet and exercise) for 3 months, followed by treatment with glutathione (300 mg/day) for 4 months. We evaluated their clinical parameters before and after glutathione treatment. We also quantified liver fat and fibrosis using vibration-controlled transient elastography. The primary outcome of the study was the change in alanine aminotransferase (ALT) levels. Results: Twenty-nine patients finished the protocol. ALT levels significantly decreased following treatment with glutathione for 4 months. In addition, triglycerides, non-esterified fatty acids, and ferritin levels also decreased with glutathione treatment. Following dichotomization of ALT responders based on a median 12.9% decrease from baseline, we found that ALT responders were younger in age and did not have severe diabetes compared with ALT non-responders. The controlled attenuation parameter also decreased in ALT responders. Conclusions: This pilot study demonstrates the potential therapeutic effects of oral administration of glutathione in practical dose for patients with NAFLD. Large-scale clinical trials are needed to verify its efficacy. Trial registration: UMIN000011118 (date of registration: July 4, 2013)
    • 

    corecore