264 research outputs found

    A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs

    Get PDF
    Extracellular vesicles (EVs), such as exosomes or oncosomes, often carry oncogenic molecules derived from tumor cells. In addition, accumulating evidence indicates that tumor cells can eject anti-cancer drugs such as chemotherapeutics and targeted drugs within EVs, a novel mechanism of drug resistance. The EV-releasing drug resistance phenotype is often coupled with cellular dedifferentiation and transformation in cells undergoing epithelial-mesenchymal transition (EMT), and the adoption of a cancer stem cell phenotype. The release of EVs is also involved in immunosuppression. Herein, we address different aspects by which EVs modulate the tumor microenvironment to become resistant to anticancer and antibody-based drugs, as well as the concept of the resistance-associated secretory phenotype (RASP)

    Intracellular MMP3 Promotes HSP Gene Expression in Collaboration With Chromobox Proteins

    Get PDF
    Matrix metalloproteinases (MMPs) are crucial factors in tumor progression, inflammatory/immune responses and tissue development/regeneration. Of note, it has been known that MMPs promote genome instability, epithelial-mesenchymal transition, invasion, and metastasis in tumor progression. We previously reported that human MMP3 could translocate into cellular nuclei and control transcription in human chondrosarcoma-derived cells and in articular cartilage (Eguchi et al. [2008] Mol Cell Biol 28(7):2391-2413); however, further transcriptional target genes and cofactors of intranuclear MMP3 have not been uncovered. In this paper, we used transcriptomics analysis in order to examine novel transcriptional target genes regulated by intracellular MMP3. We found that mRNA levels of HSP family members (HSP70B', HSP72, HSP40/DNAJ, and HSP20/CRYAB) are upregulated by the intracellular MMP3 overload. Bioinformatic analysis predicted several transcription factors that possibly interact with MMP3. Among these factors, heat shock factor 1 (HSF1) cooperated with the MMP3 to activate the HSP70B' gene promoter in reporter gene assays, while a dominant negative HSF1 blocked the role for MMP3 in the trans-activation. The hemopexin-like repeat (PEX) domain of the human MMP3 was essential for transcriptional induction of the HSP70B' gene. In addition, chromobox proteins CBX5/HP1α and CBX3/HP1γ cooperated with the PEX domain in induction of HSP70B' mRNA. Taken together, this study newly clarified that intracellular MMP3 cooperate with CBXs/HP1s in transcriptional promotion of HSP genes

    The assessment of surgical and non-surgical treatment of stage II medication-related osteonecrosis of the jaw

    Get PDF
    Non-surgical treatment has generally been recommended for stage II medication-related osteonecrosis of the jaw (MRONJ) in preference to surgery. However, non-surgical treatment is not empirically effective. The aim of this study was to evaluate whether surgical or non-surgical treatment leads to better outcomes for stage II MRONJ. In this retrospective study, surgery was performed in a total of 28 patients while 24 patients underwent non-surgical treatment. The outcomes of both treatment approaches after 6 months were evaluated and statistically compared. In addition, risk factors for surgical and non-surgical treatments were assessed for each. Surgical treatment in 25 patients (89.3%) resulted in success, with failure in 3 patients (10.7%). Non-surgical treatment was successful for 8 patients (33.3%) and failed in 16 patients (66.7%). There was therefore a significant difference between surgical and non-surgical treatment outcomes (P<0.01). Regarding risk factors, in non-surgical treatment primary diseases, medications, and drug holiday had a significant effect on outcomes (P<0.01). Risk factors for surgical treatment could not be clarified. Surgical treatment is more effective than non-surgical treatment for stage II MRONJ, and drug holiday, primary disease, and medication constitute risk factors in non-surgical treatment

    Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion

    Get PDF
    Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (alpha, beta, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed

    OstemiR: A Novel Panel of MicroRNA Biomarkers in Osteoblastic and Osteocytic Differentiation from Mesencymal Stem Cells

    Get PDF
     MicroRNAs (miRNAs) are small RNA molecules of 21–25 nucleotides that regulate cell behavior through inhibition of translation from mRNA to protein, promotion of mRNA degradation and control of gene transcription. In this study, we investigated the miRNA expression signatures of cell cultures undergoing osteoblastic and osteocytic differentiation from mesenchymal stem cells (MSC) using mouse MSC line KUSA-A1 and human MSCs. Ninety types of miRNA were quantified during osteoblastic/osteocytic differentiation in KUSA-A1 cells utilizing miRNA PCR arrays. Coincidently with mRNA induction of the osteoblastic and osteocytic markers, the expression levels of several dozen miRNAs including miR-30 family, let-7 family, miR-21, miR-16, miR-155, miR-322 and Snord85 were changed during the differentiation process. These miRNAs were predicted to recognize osteogenic differentiation-, stemness-, epinegetics-, and cell cycle-related mRNAs, and were thus designated OstemiR. Among those OstemiR, the miR-30 family was classified into miR-30b/c and miR-30a/d/e groups on the basis of expression patterns during osteogenesis as well as mature miRNA structures. In silico prediction and subsequent qRT-PCR in stable miR-30d transfectants clarified that context-dependent targeting of miR-30d on known regulators of bone formation including osteopontin/spp1, lifr, ccn2/ctgf, ccn1/cyr61, runx2, sox9 as well as novel key factors including lin28a, hnrnpa3, hspa5/grp78, eed and pcgf5. In addition, knockdown of human OstemiR miR-541 increased Osteopontin/SPP1 expression and calcification in hMSC osteoblastic differentiation, indicating that miR-541 is a negative regulator of osteoblastic differentiation. These observations indicate stage-specific roles of OstemiR especially miR-541 and the miR-30 family on novel targets in osteogenesis

    Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer

    Get PDF
    Researchers have developed several three-dimensional (3D) culture systems, including spheroids, organoids, and tumoroids with increased properties of cancer stem cells (CSCs), also called cancer-initiating cells (CICs). Drug resistance is a crucial issue involving recurrence in cancer patients. Many studies on anti-cancer drugs have been reported using 2D culture systems, whereas 3D cultured tumoroids have many advantages for assessing drug sensitivity and resistance. Here, we aimed to investigate whether Cisplatin (a DNA crosslinker), Imatinib (a multiple tyrosine kinase inhibitor), and 5-Fluorouracil (5-FU: an antimetabolite) alter the tumoroid growth of metastatic colorectal cancer (mCRC). Gene expression signatures of highly metastatic aggregative CRC (LuM1 cells) vs. low-metastatic, non-aggregative CRC (Colon26 and NM11 cells) were analyzed using microarray. To establish a 3D culture-based multiplexing reporter assay system, LuM1 was stably transfected with the Mmp9 promoter-driven ZsGreen fluorescence reporter gene, which was designated as LuM1/m9 cells and cultured in NanoCulture Plate®, a gel-free 3D culture device. LuM1 cells highly expressed mRNA encoding ABCG2 (a drug resistance pump, i.e., CSC/CIC marker), other CSC/CIC markers (DLL1, EpCAM, podoplanin, STAT3/5), pluripotent stem cell markers (Sox4/7, N-myc, GATA3, Nanog), and metastatic markers (MMPs, Integrins, EGFR), compared to the other two cell types. Hoechst efflux stem cell-like side population was increased in LuM1 (7.8%) compared with Colon26 (2.9%), both of which were markedly reduced by verapamil treatment, an ABCG2 inhibitor. Smaller cell aggregates of LuM1 were more sensitive to Cisplatin (at 10 μM), whereas larger tumoroids with increased ABCG2 expression were insensitive. Notably, Cisplatin (2 μM) and Imatinib (10 μM) at low concentrations significantly promoted tumoroid formation (cell aggregation) and increased Mmp9 promoter activity in mCRC LuM1/m9, while not cytotoxic to them. On the other hand, 5-FU significantly inhibited tumoroid growth, although not completely. Thus, drug resistance in cancer with increased stem cell properties was modeled using the gel-free 3D cultured tumoroid system. The tumoroid culture is useful and easily accessible for the assessment of drug sensitivity and resistance

    Rab11A Functions as a Negative Regulator of Osteoclastogenesis through Dictating Lysosome-Induced Proteolysis of c-fms and RANK Surface Receptors

    Get PDF
    Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-kappa B ligand (RANKL). Rab11A GTPase, belonging to Rab11 subfamily representing the largest branch of Ras superfamily of small GTPases, has been identified as one of the crucial regulators of cell surface receptor recycling. Nevertheless, the regulatory role of Rab11A in osteoclast differentiation has been completely unknown. In this study, we found that Rab11A was strongly upregulated at a late stage of osteoclast differentiation derived from bone marrow-derived macrophages (BMMs) or RAW-D murine osteoclast precursor cells. Rab11A silencing promoted osteoclast formation and significantly increased the surface levels of c-fms and receptor activator of nuclear factor-kappa B (RANK) while its overexpression attenuated osteoclast formation and the surface levels of c-fms and RANK. Using immunocytochemical staining for tracking Rab11A vesicular localization, we observed that Rab11A was localized in early and late endosomes, but not lysosomes. Intriguingly, Rab11A overexpression caused the enhancement of fluorescent intensity and size-based enlargement of early endosomes. Besides, Rab11A overexpression promoted lysosomal activity via elevating the endogenous levels of a specific lysosomal protein, LAMP1, and two key lysosomal enzymes, cathepsins B and D in osteoclasts. More importantly, inhibition of the lysosomal activity by chloroquine, we found that the endogenous levels of c-fms and RANK proteins were enhanced in osteoclasts. From these observations, we suggest a novel function of Rab11A as a negative regulator of osteoclastogenesis mainly through (i) abolishing the surface abundance of c-fms and RANK receptors, and (ii) upregulating lysosomal activity, subsequently augmenting the degradation of c-fms and RANK receptors, probably via the axis of early endosomes-late endosomes-lysosomes in osteoclasts

    Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells

    Get PDF
    Tumor cells exhibit therapeutic stress resistance-associated secretory phenotype involving extracellular vesicles (EVs) such as oncosomes and heat shock proteins (HSPs). Such a secretory phenotype occurs in response to cell stress and cancer therapeutics. HSPs are stress-responsive molecular chaperones promoting proper protein folding, while also being released from cells with EVs as well as a soluble form known as alarmins. We have here investigated the secretory phenotype of castration-resistant prostate cancer (CRPC) cells using proteome analysis. We have also examined the roles of the key co-chaperone CDC37 in the release of EV proteins including CD9 and epithelial-to-mesenchymal transition (EMT), a key event in tumor progression. EVs derived from CRPC cells promoted EMT in normal prostate epithelial cells. Some HSP family members and their potential receptor CD91/LRP1 were enriched at high levels in CRPC cell-derived EVs among over 700 other protein types found by mass spectrometry. The small EVs (30-200 nm in size) were released even in a non-heated condition from the prostate cancer cells, whereas the EMT-coupled release of EVs (200-500 nm) and damaged membrane vesicles with associated HSP90 alpha was increased after heat shock stress (HSS). GAPDH and lactate dehydrogenase, a marker of membrane leakage/damage, were also found in conditioned media upon HSS. During this stress response, the intracellular chaperone CDC37 was transcriptionally induced by heat shock factor 1 (HSF1), which activated the CDC37 core promoter, containing an interspecies conserved heat shock element. In contrast, knockdown of CDC37 decreased EMT-coupled release of CD9-containing vesicles. Triple siRNA targeting CDC37, HSP90 alpha, and HSP90 beta was required for efficient reduction of this chaperone trio and to reduce tumorigenicity of the CRPC cells in vivo. Taken together, we define "stressome" as cellular stress-induced all secretion products, including EVs (200-500 nm), membrane-damaged vesicles and remnants, and extracellular HSP90 and GAPDH. Our data also indicated that CDC37 is crucial for the release of vesicular proteins and tumor progression in prostate cancer
    corecore