144 research outputs found

    On the Shape of Liquid Metal Droplets in Electromagnetic Levitation Experiments

    Get PDF
    We present calculations and measurements on the shape of liquid metal droplets in electromagnetic levitation experiments. A normal stress balance model was developed to predict the shapes of liquid metal droplets that will be obtained in a microgravity experiment to measure the viscosity and surface tension of undercooled metals. This model was tested by calculating the droplet shapes in containerless experiments conducted to determine the surface tension of liquid metals. Inconsistencies associated with the results of a previous paper are elucidated. The computational results of the mathematical model are compared with the results of ground-based experiments for two different metals. The importance of the ratio of electromagnetic skin depth-to-droplet radius to the accuracy of the mathematical model is discussed. A planned alternate approach to modeling the shape by consideration of the entire droplet rather than only the surface is presented. As an example of an application. the influence of the shape on the splitting of the surface oscillation modes of levitated liquid metal droplets is discussed
    corecore